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h i g h l i g h t s

• We consider a model of basic similarity judgments, based on quantum probability principles.
• We augment this model with Smolensky et al. (2014) ideas for structure in representations.
• We show that this proposal can accommodate the main insights regarding structure in similarity judgments.
• We consider the formal properties of our model and discuss the placement of this work in the similarity, analogy literature.
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a b s t r a c t

Recently, Busemeyer et al. (2011) presented a model for how the conjunction fallacy (Tversky & Kahne-
man, 1983) emerges, based on the principles of quantum probability (QP) theory. Pothos et al. (2013)
extended this model to account for the main similarity findings of Tversky (1977), which have served as
a golden standard for testing novel theories of similarity. However, Tversky’s (1977) empirical findings
did not address the now established insight that, in comparing two objects, overlap in matching parts of
the objects tends to have a greater impact on their similarity, than overlap in non-matching parts. We
show how the QP similarity model can be directly extended to accommodate structure in similarity com-
parisons. Smolensky’s et al.’s (2014) proposal for modeling structure in linguistic representations, with
tensor products, can be adapted ‘as is’ with the QP similaritymodel. The formal properties of the extended
QP similarity model are analyzed, some indicative fits are presented, and, finally, a novel prediction is de-
veloped.

© 2014 Elsevier Inc. All rights reserved.

1. Introduction

We call quantum probability (QP) theory the rules for assigning
probability to events, without any of the physics (Hughes, 1989;
Isham, 1989). QP theory is a framework for probabilistic inference
alternative to that of classical probability (CP) theory. A case for
adopting QP theory, instead of classical probability (CP) theory, in
cognitive modeling has been made when human behavior appears
at odds with the prescription from CP theory (e.g., Aerts, 2009;
Aerts &Gabora, 2005; Blutner, Pothos, & Bruza, 2013; Nelson, Kitto,
Galea, McEvoy, & Bruza, 2013; for overviews see Busemeyer &
Bruza, 2012; Haven&Khrennikov, 2013; Khrennikov, 2010; Pothos
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& Busemeyer, 2013; Wang, Busemeyer, Atmanspacher, & Pothos,
2013; Yearsley & Pothos, 2014). Recently, Busemeyer, Pothos,
Franco, and Trueblood (2011) presented a model of decision mak-
ing, based on QP principles, with an emphasis on how the con-
junction fallacy (Tversky & Kahneman, 1983), and related findings,
emerge. For example, in the conjunction fallacy experiment, par-
ticipants were told of a hypothetical person, Linda, described very
much as a feminist (F) and not at all as a bank teller (BT). Partic-
ipant responses indicated that Prob (F ∧ BT ) > Prob(BT ), which
is impossible classically. In Busemeyer et al.’s (2011) QP model for
this conjunction fallacy, if one assumes that the BT , F possibilities
are incompatible, then it can emerge that the quantum probability
of F ∧ then BT is higher than that of B.

Pothos, Busemeyer, and Trueblood (2013) considered whether
the QP decision model could be extended to account for basic sim-
ilarity judgments. Their motivation was that QP theory is formal-
ized in multidimensional, vector spaces, called Hilbert spaces. The
most common, standard way to model basic similarity involves
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multidimensional representations (e.g., Shepard, 1987) and the
conceptualization of similarity as a function of distance. For ex-
ample, such models have been employed in the predominant ap-
proaches to categorization (e.g., Goldstone, 1994a; Nosofsky, 1984;
Wills & Pothos, 2012). Therefore, since QP representations are also
geometric (that is, involve elements in some multidimensional
vector space), perhapsQP theory canprovide some interesting gen-
eralization to the standard distance-based similarity models?

Note first that, by basic similarity judgments, we imply ones
that are nonanalytic (in the psychological sense), direct, and im-
mediate. If we accept the view that basic similarity judgments can
be modeled as some function of distance, then they have to be
consistent with the metric axioms—mathematical requirements
that all (simple) functions of distances need to obey. These ax-
ioms are intuitively appealing. For example, the symmetry ax-
iom, requires that distance (A, B) = distance(B, A), implying that
similarity (A, B) = similarity(B, A). In one of the most influential
studies in the basic similarity literature, Tversky (1977) showed
that all metric axioms can be violated in similarity judgments of
naïve observers. Tversky’s (1977) findings have become a golden
standard of empirical results that should be accounted for by any
basic similarity model and, indeed, have been the focus of theo-
retical effort in related research ever since (e.g., Ashby & Perrin,
1988; Krumhansl, 1978). It is worth noting that basic, distance-
based similarity metrics can be made to violate the metric ax-
ioms. For example, symmetry can be violated if similarity (A, B) =

pAB · distance (A, B), where pAB is just a directionality parameter,
that is a parameter which can have a different value depending on
whether the similarity evaluated is between A and B or between B
andA (Nosofsky, 1991). However, the real challenge has been to ex-
plore how consistency with Tversky’s (1977) findings can emerge
from the structure of a basic similarity model.

Pothos et al. (2013) showed how the QP decision model can
indeed accommodate Tversky’s (1977) key findings, with fairly
minor modifications. The objects to be compared in a similarity
judgment are represented as subspaces, whose dimensionality de-
pends on the extent of knowledgewe have about the objects. Then,
similarity judgments are modeled just as conjunctive probabilities
of thinking of the first compared object and then the second (one
also needs to assume a relevant mental state, that is neutral be-
tween the compared objects), that is, Sim (A, B) = Prob(A∧ then B)
(see also Section 2). For example, Tversky’s (1977) famous example
of violations of symmetry in similarity judgments was the finding
that Sim (Korea, China) > Sim(China, Korea), given that partici-
pants have more extensive knowledge for China, than Korea (note,
actually Red China and North Korea). In the QP model similarity
model, this asymmetry can emerge, as long as the dimensionality
for the China subspace is greater than that for the Korea subspace.

The application of the QP decision model onto similarity indi-
cates that the formalism can encompass findings from both deci-
sion making and basic similarity. Clearly, such a statement needs
to be qualified, since the decision QP model addresses only certain
kinds of decision making results and, likewise, the similarity one,
only certain kinds of basic similarity results. Nevertheless, Pothos
et al.’s theory (2013) is encouraging and fits with an overall pre-
rogative to explain as wide a range of empirical findings as possi-
ble, with as few explanatory principles as possible. For example,
supporting the same QP model in both decision making and basic
similaritymakes it plausible that the same principles underlie both
kinds of cognitive processes.

While our focus until now has been on basic similarly, a
somewhatmore recent line of work concerns analogical similarity,
which partly concerns the study of analogy formation. Simplifying,
analogy formation is about how a naïve observer can establish
associations between the elements of two representations (e.g., the
atom and the solar system). A key focus for models of analogical

similarity has been the correspondence between the constituent
elements of two compared objects; how do they develop and
what is their role in the overall similarity judgment, between the
compared objects (Gentner, 1983; Goldstone, 1994b; Goldstone &
Son, 2005; Larkey &Markman, 2005; Taylor & Hummel, 2009)? For
example, suppose we are comparing two persons, Sue and Linda,
with black hair. Surely, this fact would contribute more to the
overall similarity judgment between Sue and Linda, compared to
an alternative situation, where Sue has black hair and Linda has
black shoes. That is, there is intuition and supporting evidence
that human similarity judgments are sensitive to the structure of
the compared objects. An influential idea in modeling structure in
similarity judgments is that feature matches can be aligned or not
aligned (Goldstone, 1994b; cf. Markman & Gentner, 1993). That
is, parts of one object can be placed in correspondence with the
parts of another or not. The implication is that matching aligned
parts have a greater impact on similarity judgments thanmatching
unaligned parts, but the latter can increase similarity too.

We note that the distinction we make between basic and
analogical similarity is partly one of convenience, as it allows us
to easily refer to models of similarity not emphasizing structure
(e.g., Ashby & Perrin, 1988; Krumhansl, 1978) and ones that
do (Gentner, 1983; Goldstone, 1994b). Cognitively, it is possible
that there are differences between judgments of basic similarity
and analogy formation (e.g., the latter has been claimed to be
sometimes analytic, Casale, Roeder, & Ashby, 2012), but these
issues do not concern us presently and the distinction between
basic and analogical similarity we employ refers to the objectives
and scope of corresponding models.

The purpose of this work is to examine whether the QP ba-
sic similarity model can be further extended to cover some key
requirements for analogical similarity, notably the way similarity
computations are affected by correspondences between represen-
tation parts (we do not consider the mechanisms that lead to the
discovery of which features align or not; this is an important as-
pect of research in analogical similarity, but beyond the scope of
this work). An extension of this sort cannot be expected to perform
as well on analogical similarity results, as thoroughbred models of
analogical similarity (e.g., Goldstone, 1994b; Hahn, Close, & Graf,
2009; Larkey & Markman, 2005). Nevertheless, attempting the ex-
tension is important: if successful, it will show that the mathe-
matical mechanisms for basic similarity judgments are (plausibly
and to some extent) the same as the ones for analogical similar-
ity judgments. Equally, if the general model leads to inferior fits
in the novel domain, perhaps a restricted scope is more appropri-
ate. This question of possible equivalence of mathematical mecha-
nisms is separate from the one concerning brain systems (cf. Casale
et al., 2012). Note also that most basic similarity models cannot ac-
count for structure in similarity judgments (Ashby & Perrin, 1988;
Krumhansl, 1978; Tversky, 1977; we return to this point later).
Likewise, current attempts to extend analogical similarity models
to cover Tversky’s (1977) results have difficulties. This separated-
ness of the literatures on basic similarity and analogical similarity
further motivate the present effort to develop a QP model of ba-
sic/analogical similarity.

As it turns out, there is a very straightforward way to extend
the QP model of basic similarity into one of analogical similar-
ity, using Smolensky, Goldrick, andMathis’s (2014) and Smolensky
(1990) ideas for modeling structure in linguistic representations.
They were interested in the similarity between linguistic repre-
sentations, where the role in one representation was compared to
the role in the other, and likewise for the fillers (e.g., in relation
to phonology, a role could be ‘syllable-onset’ and a corresponding
filler could be ‘r’, for the word ‘rat’, as in Smolensky et al.’s, 2014,
example in p. 5). They derived their similarity method by employ-
ing a tensor product representation, which effectively separated



Download English Version:

https://daneshyari.com/en/article/326740

Download Persian Version:

https://daneshyari.com/article/326740

Daneshyari.com

https://daneshyari.com/en/article/326740
https://daneshyari.com/article/326740
https://daneshyari.com

