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HIGHLIGHTS

e We present a new metric to predict the difficulty of supervised concept acquisition.

e Existing mathematical metrics of concept learning explain one SHJ difficulty order.

e That order is for adult human learners facing separable dimension examples.

e This new mathematical metric also explains the order that emerges in all other cases.
e The metric measures information complexity instead of logical complexity.
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ABSTRACT

The nature of concept learning is a core question in cognitive science. Theories must account for the rel-
ative difficulty of acquiring different concepts by supervised learners. For a canonical set of six category
types, two distinct orderings of classification difficulty have been found. One ordering, which we call
paradigm-specific, occurs when adult human learners classify objects with easily distinguishable charac-
teristics such as size, shape, and shading. The general order occurs in all other known cases: when adult
humans classify objects with characteristics that are not readily distinguished (e.g., brightness, saturation,
hue); for children and monkeys; and when categorization difficulty is extrapolated from errors in identi-
fication learning. The paradigm-specific order was found to be predictable mathematically by measuring
the logical complexity of tasks, i.e., how concisely the solution can be represented by logical rules.
However, logical complexity explains only the paradigm-specific order but not the general order. Here
we propose a new difficulty measurement, information complexity, that calculates the amount of uncer-
tainty remaining when a subset of the dimensions are specified. This measurement is based on Shannon
entropy. We show that, when the metric extracts minimal uncertainties, this new measurement predicts
the paradigm-specific order for the canonical six category types, and when the metric extracts average
uncertainties, this new measurement predicts the general order. Moreover, for learning category types be-
yond the canonical six, we find that the minimal-uncertainty formulation correctly predicts the paradigm-
specific order as well or better than existing metrics (Boolean complexity and GIST) in most cases.
© 2015 Elsevier Inc. All rights reserved.

1. Introduction

examples (all possibilities of three binary-valued dimensions) to
two equal-sized classes (Shepard, Hovland, & Jenkins, 1961). These

In a canonical classification learning experiment, human learn- classification problems, commonly referred to as the SHJ types,

ers are tested on the six possible categorizations that assign eight

have been instrumental in the development and evaluation of the-
ories and models of category learning. Learning is easiest for Type
I in which the classes can be distinguished using a simple rule
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on a single dimension—e.g. all large items are category A and all
small items are category B. Learning is most difficult for Type VI
in which the two classes cannot be distinguished according to any
set of rules or statistical regularities. The remaining types (I[-V') are
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intermediate in difficulty. (Table 2 provides a complete description
of the six mappings.)

These experiments yield a well-known ordering with a partic-
ular pattern across the intermediate types: Type II (a logical XOR
rule on two dimensions) is learned faster than Types III-V, which
are learned at the same speed. An update to this traditional SHJ or-
dering based on a review of the existing literature and a series of
new experiments reveals that Type II does not differ from Types
IIT-V except under particular instructional conditions that encour-
age rule formation or attention to particular dimensions (Kurtz,
Levering, Romero, Stanton, & Morris, 2013).

While this ordering (with or without the recent update) is gen-
erally what researchers associate with the SHJ types, there also ex-
ists a set of results across a wide variety of learning circumstances
in which an entirely different ordering occurs. Specifically, the in-
termediate types separate into an ordering as follows: I < IV <
Il <V < Il < VI.Of particular note is the difficulty in learning
Type II (along with the non-equivalence of Types IlI-V). There are
four separate cases that yield results consistent with this order-
ing: first, stimulus generalization theory, which generates a pre-
diction of the ordering of the classification problems based on the
frequency of mistakes (pairwise confusions) in learning unique
labels (i.e., identification learning) for each item (Shepard et al.,
1961); second, stimuli comprised of integral dimensions (Garner,
1974) that are difficult for the learner to perceptually analyze and
distinguish, such as brightness, hue, and saturation (Nosofsky &
Palmeri, 1996); third, learning by monkeys (Smith, Minda, & Wash-
burn, 2004); fourth, learning by children (Minda, Desroches, &
Church, 2008).

Since this less well-known ordering occurs across such far-
reaching circumstances, we will refer to it as the general order; and
since the well-known SH]J ordering is only found in one specific
learning setting (adult humans learning to classify separable
stimuli), we will refer to it as the paradigm-specific order. We
acknowledge that for some readers, it may seem counterintuitive
to dissociate the ordering they are most familiar with from the
ordering we designate as general, but in fact it makes good sense
to do so.

To provide further details about the evidence for the general
ordering, it has been shown that the results for learning the SHJ
types with integral-dimension stimuli fully match the general
order,ie.] < IV < Ill <V < II < VI (Nosofsky & Palmeri, 1996).
Since this also corresponds to stimuli generalization theory, these
results are interpreted as reinforcing Shepard et al.’s (1961) view
that stimuli generalization theory predicts ease of learning unless
a process of attention or abstraction can be applied by the learner.

The settings with non-adult or non-human learners match an
important characteristic of the general order, that II is found to be
more difficult than Types II[-V, while there is only some support
for the IV < Il < V ordering. In the cross-species research (Smith
et al., 2004), four rhesus monkeys were tested on a modified ver-
sion of the SHJ six types. The core finding is that Type Il was more
difficult for the monkeys to learn than Types Ill[-V (which the au-
thors elect to average across in their reporting). In the developmen-
tal work (Minda et al., 2008), the researchers modified the SH]J task
to be age-appropriate for children of ages 3, 5, and 8. Only Types
[-1V were tested: Type Il was the most difficult to learn (consis-
tent with the general rather than the paradigm-specific order). No
significant difference between Types IIl and IV was observed, how-
ever it appears that the researchers did not evaluate the interaction
between age of children and their performance on Types Il and
IV. From the mean accuracy data, it can be seen that the children
show increasingly good performance on Type Il with age and in-
creasingly poor performance with age on Type IV. While we do not
have access to statistical support, the available evidence is consis-
tent with the younger children learning Type IV more easily than
Type Il (as in the general ordering).

There are two general classes of explanation in the psychologi-
cal literature on category learning that have been successfully ap-
plied to the SHJ types. Mechanistic models, which are implemented
in computational simulations of trial-by-trial learning, have been
used to explain the paradigm-specific order (i.e. Kurtz, 2007; Love,
Medin, & Gureckis, 2004) and some have been shown to account
for both the paradigm-specific and general orders (Kruschke, 1992;
Nosofsky & Palmeri, 1996; Pape & Kurtz, 2013). The other approach
is based on the use of formal metrics to measure mathematical
(logical) complexity (Feldman, 2000, 2006; Goodman, Tenenbaum,
Feldman, & Griffiths, 2008; Goodwin & Johnson-Laird, 2011; La-
fond, Lacouture, & Mineau, 2007; Vigo, 2006, 2009, 2013). These
models heretofore account only for the paradigm-specific order.

We put forth a mathematical complexity metric, information
complexity, which can account for, on one hand, the paradigm-
specific order and, on the other hand, the general order, with a
single change in the formula from a min to a mean operator. Our
metric calculates the Shannon entropy (Shannon, 1948) in a clas-
sification problem when a subset of the dimensions are speci-
fied. The min operator identifies the subsets of dimensions which
provide the most information (and thus leave the minimal uncer-
tainty): this applies to the paradigm-specific order, in which so-
phisticated learners can observe separable dimensions and may
employ abstraction or attention with regard to these dimensions.
On the other hand, the mean operator averages over subsets of di-
mensions, and, correspondingly, it applies to the general order, in
which learners are less sophisticated or unable to separate dimen-
sions. The logic of this correspondence is described in greater de-
tail in Section 2 (Theory). Among complexity accounts of learning
behavior, this new measurement has the advantage of being an an-
alytical function exclusively of observable parameters, i.e. it does
not require a heuristic to calculate (Feldman, 2000) nor does it re-
quire the fitting parameters to data (Vigo, 2013).

In Section 2, we describe the background of information the-
ory and define the metric. In Section 3, we evaluate the metric’s
prediction of learning behavior. In Section 3.1, we demonstrate the
metric’s ability to predict the paradigm-specific and general orders
of the SHJ tasks, as well as show it successfully predicts quantita-
tive error rates. In Section 3.2, we demonstrate the metric’s ability
to predict the paradigm-specific ordering on classification learn-
ing tasks beyond SHJ] as well or better than the existing metrics
(Boolean complexity and GIST) in all cases but one. We also show it
successfully predicts the quantitative error rates. The general order
setting has not been tested beyond SHJ: this section also, therefore,
provides predictions for those future experiments.

2. Theory

In this section, we first provide a comparison of the existing
metrics in the literature, which rely on logical complexity, and
Shannon entropy, which provides the foundation of our metric.
Then, we formally introduce our metric and explain its compo-
nents.

2.1. Logical complexity versus information complexity

Logical complexity characterizes the length of the shortest
description of a system. In an SHJ-style classification, the ‘system’
in question is a particular categorization. Feldman’s Boolean
complexity (Feldman, 2000) is a type of logical complexity metric,
but there are others, such as Kolmogorov (algorithmic) complexity,
which is the length of the shortest program to produce a certain
output (Li & Vitaanyi, 2008). These are all related in the sense that
they are attempting to construct a minimal set of logical rules that
describe a system or process or categorization. The measurement
of Boolean complexity begins with the ‘disjunctive normal form’
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