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h i g h l i g h t s

• Cognitive models and latent variable models are combined into a single framework.
• The framework can be applied in a Bayesian inferential context.
• An application uses data from an RT experiment and questionnaires in a single model.
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a b s t r a c t

I describe a cognitive latent variable model, a combination of a cognitive model and a latent variable model
that can be used to aggregate information regarding cognitive parameters across participants and tasks.
Themodel is ideally suited for uncovering relationships between latent task abilities as they are expressed
in experimental paradigms, but can also be used as data fusion tools to connect latent abilities with
external covariates from entirely different data sources. An example application deals with the structure
of cognitive abilities underlying an executive functioning task and its relation to personality traits.

© 2014 Elsevier Inc. All rights reserved.

1. Introduction

1.1. Cognitive psychometrics

Cognitive psychometrics is the term coined by Batchelder
(1998) to describe the application of cognitive process models
as assessment tools, or, more fundamentally, to apply the
psychometrics of individual differences to cognitive process
parameters. The practice of combining cognitive measurement
models with individual variability, implemented as statistical
random effects, serves in the first place to adapt cognitive
models to the reality of randomly sampled, noninterchangeable
participants (e.g., Batchelder, 2007). As has been pointed out by
Estes (1956, 2002), Hamaker (2012), and Heathcote, Brown, and
Mewhort (2000), averaging artifacts can lead to biased estimates
and errors in inference. More than that, however, the assumption
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that an individual’s process parameters are in fact a random draw
from some superordinate population distribution introduces a
crucial newaspect to cognitivemodeling: The idea that theremight
be formal structure to be derived from the individual differences
researchersoften observe among participants’ cognitive model
parameters.

Structured individual differences are a critical concept in certain
fields of cognitive science. For example, intelligence research is
dominated by studies inwhich individuals are assessed on a variety
of tasks, and it is typically observed that participants who score
high on one task also score high on other tasks (e.g., Kamphaus,
Petoskey, & Morgan, 1997). This covariance is taken to imply that
there exists a small set of person-specific abilities that jointly give
rise to correlated behavior on the larger set of tasks (a ‘‘positive
manifold’’). An identical approach is often taken in fields such
as working memory (e.g., Oberauer, Süß, Schulze, Wilhelm, &
Wittmann, 2000) or executive functioning (e.g., Miyake et al.,
2000), where unobserved factors supporting stable differences
across individuals are inferred from the correlational pattern
between multiple basic tasks. This type of data analysis is
widely known as latent variable modeling (Bartholomew, Knott,
& Moustaki, 2011; Skrondal & Rabe-Hesketh, 2004).
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Importantly, the interpretability and usefulness of the results
of such analyses depend on the interpretability of the quantities
measured in the basic tasks. If each score in a given set of tasks
can reasonably be thought to tap intelligence, then it is valid to
conclude that the inferred latent factors relate to intelligence as
well. If, on the other hand, scores in the basic tasks are nonlinear
amalgams of more elementary variables, interpretation of the
latent factors is complicated. Cognitivemodels serve to decompose
such complex data into interpretable parameters. The modeling
strategy proposed in this paper involves – within a single model
– a latent variable structure built on top of a cognitive process
model, to allow inference of latent variables that have cognitive
interpretations.

1.2. A qualitatively different type of conclusion

When latent variable models are combined with cognitive
models to forma cognitive latent variablemodel (CLVM), this affords
a qualitatively different type of conclusion from either classical
psychometrics or classical cognitive modeling. For example,
using a cognitive model with a parameter interpreted as speed
of information processing (e.g., the drift rate in a diffusion
model Ratcliff, 1978), a CLVMpermits inferences about unobserved
variables that contribute to the total rate of information processing
in a particular task. A conventional psychometric model would not
permit such process-based conclusions, whereas a conventional
cognitivemodelwouldnot be equipped to infer higher-order latent
properties.

Combining cognitivemodelswith latent variablemodels allows
us to bridge the gap between experimental and individual-
differences research—a long-standing issue in psychology since
Cronbach’s (1957) lament that the science is split across two
disparate disciplines, reiterated more recently by Borsboom
(2006). It is the aim of the present paper to present an example
of a CLVM, a formal model that extends the logic of cognitive
psychometrics to include latent variable structures.

The structure of the paper is as follows. The next section will
introduce two components of the CLVM: the diffusion model as
a cognitive model of choice response time data and the factor
analysis model as a measurement model to tie multiple tasks
together. This section will also introduce some required notation.
The section after that will focus on properties of the integrative
CLVM. After that, a short section will be devoted to the relevant
details of Bayesian inference andmodel selection. Finally, a section
will provide detail regarding the application of the CLVM in the
field of emotion psychology.

2. Diffusion models for two-choice RT

The data level of this CLVM consists of a probabilistic repre-
sentation of data as they are predicted by a particular cognitive
model—the sampling scheme of the data. The cognitive model
used here is the diffusion model for two-choice RT (Stone, 1960),
which has been very popular in cognitive science (Wagenmakers,
2009), with applications ranging frommemory (Ratcliff, 1978) and
low-level perception (Ratcliff & Rouder, 1998) to semantic cogni-
tion (Vandekerckhove, Verheyen, & Tuerlinckx, 2010) and emotion
psychology (Pe, Vandekerckhove, & Kuppens, 2013;White, Ratcliff,
Vasey, & McKoon, 2009). The diffusion model is based on the prin-
ciple of sequential accumulation of information—it assumes that a
decision making system samples small units of information, se-
quentially over time, from whatever stimulus to which it was ex-
posed. These sampled units of evidence are aggregated with infor-
mation already accumulated. After each accretion step, the system
evaluateswhether the total amount of evidencewarrants themak-
ing of a decision. If so, the process ends and a response is executed.

This accumulation process is the fundamental assumption – the
‘‘central dogma’’ – of a broad and highly successful class of sequen-
tial sampling models for RT.

More specifically, the process assumptions of the diffusion
model are that a single evidence counter accumulates towards
one of two decision boundaries, with a starting point that may
be closer to one boundary than the other. Fig. 1 illustrates the
process. Given the freedom of two decision bounds, the model can
account for two distinct types of bias in the response process. In
addition to biased processing of information (which is reflected
in the average rate of evidence accumulation, a parameter called
the drift rate, δ), the diffusion model allows for an a-priori bias
that is prior to and independent of the information accumulation
process (here parameterized as a proportion, so that a bias β = 0.5
implies a-priori indifference). The distance between the decision
bounds (known as the boundary separation α) performs a separate,
interesting task in the diffusion process. Bounds that are close
together lead to fast decisions that are largely independent from
the information contained in the stimulus (i.e., close to chance
level), whereas distant bounds lead to slow response processes
whose outcome is mostly determined by the direction of the
accumulation process (i.e., if δ is positive and α is high, the
upper boundary is likely to be hit). This parameter hence captures
the well-known speed–accuracy trade-off. The fourth and final
parameter of the diffusion model is the nondecision time τ .
This shift parameter determines the leading edge of the latency
distribution, and is typically interpreted as the sum duration of all
non-decision processes (and it is additionally assumed that these
processes are independent of and serial to the decision process).

The PDF of the Wiener diffusion model is bivariate (with one
dimension for the latency and one for the binary choice); its
analytical form also contains an infinite sum and the latency
distribution can therefore at best be approximated:
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p (t, x = 1|α, β, τ , δ) = p (t, x = 0|α, 1 − β, τ ,−δ) .

(1)

Fortunately, efficient methods for the computation of the
Wiener diffusion model density and distribution functions ex-
ist (Blurton, Kesselmeier, & Gondan, 2012; Navarro & Fuss,
2009, for the CDF and PDF, respectively), making it a highly
tractable model. Eq. (1) lacks a diffusion coefficient parameter,
which is sometimes used to scale the evidence dimension (and typ-
ically denoted s); the coefficient does not appear because it will be
set to 1 in all applications, and it cancels out everywhere.

Fig. 2 shows a graphical model representation of a Wiener
diffusionmodel for a data set where P participants do a task with T
conditions and I trials in each condition. For conciseness, y denotes
a choice RT pair (t, x). The equations to the right of the diagram
list the distributional assumptions of the model, including some
example priors.

It is important to note that this datamodel can serve a dual pur-
pose for researchers in psychology. On the one hand, researchers
can decide to buy in to the assumptions of the model—taking the
process as given and drawing conclusions that may hinge on the
accuracy of these assumptions. For this particular cognitive model,
the literature contains reports of experimental manipulations that
selectively affectmodel parameters, lending some credibility to the
process assumptions (e.g., Voss, Rothermund, & Voss, 2004). How-
ever, the model would remain useful even if one is unwilling to
buy in to the exact process—by taking the model as a convenient
data level that captures the shape of the data and serves strictly as
a parsimonious description.
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