Thyroid Disease and the Cardiovascular System

Sara Danzi, PhD^{a,*}, Irwin Klein, мD^{b,c}

KEYWORDS

- Hypothyroidism Hyperthyroidism Subclinical Thyroid hormone
- Triiodothyronine Heart Cardiac myocyte

KEY POINTS

- Thyroid dysfunction may significantly impair cardiac and cardiovascular health.
- Chronic diseases, such as heart disease, may lead to the low T₃ syndrome.
- More severe heart disease (NYS Heart Association classification stages 3 and 4) is associated with an increased prevalence of low T₃ syndrome.
- Regardless of the cause, in this context decreased serum T₃ levels are associated with poor prognosis, especially in heart disease.

INTRODUCTION

There is an intimate relationship between the thyroid gland and the heart. Thyroid dysfunction, including subclinical thyroid disease, has significant effects on cardiovascular function and health. Likewise, chronic disease states, such as heart disease, may lead to reduced serum thyroid hormone levels, specifically T_3 (low T_3 syndrome) causing a synergistic negative effect on cardiac and cardiovascular function. Therefore, diagnosis and treatment of the patient with heart disease may benefit from analysis of thyroid status, including levels of serum total T_3 .

THYROID HORMONE REGULATION AND METABOLISM

The thyroid gland produces 2 biologically active hormones, thyroxine (T_4) and triiodothyronine (T_3). Although T_4 has some documented nongenomic effects, it is largely considered a prohormone. Most of T_4 is converted to T_3 by 5'-monodeiodination in the liver, kidneys, and skeletal muscle. 1,2 T_3 is then delivered to the circulation so that it is available for tissues and organs that rely solely or predominantly on serum T_3 , such as the heart.

E-mail address: saradanzi@gmail.com

^a Department of Biological Sciences and Geology, Queensborough Community College, 222-05 56th Avenue, Bayside, NY 11364, USA; ^b Department of Medicine and Cell Biology, NYU School of Medicine, New York, NY 10016, USA; ^c Private Office, 935 Northern Boulevard, Great Neck, NY 11021, USA

^{*} Corresponding author.

Expression and activity of relevant monodeiodinases are also regulated in part by T_3 . Serious chronic illness, such as heart disease, is often associated with decreased serum T_3 levels. This is known as low T_3 syndrome or nonthyroidal illness and is frequently caused by impaired deiodinase activity, primarily from congestion in the liver. The hepatic type 1 iodothyronine deiodinase (D1) is induced at the transcriptional level by T_3 , but in illness, a cytokine-mediated effect blocks the induction, resulting in decreased serum T_3 levels.

The regulation of thyroid hormone synthesis and secretion is primarily dependent on thyrotropin (thyroid stimulating hormone or TSH), synthesized and released by the anterior pituitary in a negative feedback loop. This feedback is largely driven by serum T_4 levels and thus, serum T_3 levels decline without promoting a compensatory response from the pituitary. In the low T_3 syndrome, however, increased T_4 production would not be beneficial because it is the conversion to T_3 that is impaired. The consequences of this and potentially significant implications for the heart and cardiovascular system are discussed.

THYROID HORMONE ACTION AT THE CELLULAR LEVEL

The actions of T_3 include genomic transcriptional activation and repression and nongenomic actions targeted to specific membrane proteins, organelles, and cytoskeletal components. Membrane proteins include solute transporters for ions (Ca^{2+} , Na^+) and glucose among many others.⁵ Together, the nongenomic and genomic actions of T_3 on cardiac myocytes and vascular smooth muscle are responsible for significant effects on the heart and cardiovascular system function.

The transcriptional actions of T_3 are mediated by nuclear receptor proteins that bind to specific thyroid hormone response elements in the upstream region of T_3 responsive genes. These nuclear receptors, which include $TR\alpha$ and $TR\beta$, activate expression of positively regulated genes in the presence of T_3 and in the absence of T_3 , repress transcription of negatively regulated genes. A survey of the list of T_3 -responsive genes in the cardiac myocyte can explain why the heart is so sensitive to serum levels of T_3 (Table 1). To Our studies demonstrate that it is T_3 and not T_4 that enters the cardiac myocyte (Sara Danzi, PhD, and Irwin Klein, MD, personal communication). Measures of α -MHC heteronuclear RNA (hnRNA), the first product of transcription (prespliced), serve as a rapid, sensitive measure of T_3 -mediated transcription in the rodent myocyte. Cardiac α -MHC hnRNA is detectable within 30 minutes after T_3 administration. However, after T_4 administration, detectable α -MHC hnRNA expression is delayed by almost 12 hours coinciding with rising serum T_3 levels. These data support the premise that T_4 is not transported into the cardiac myocyte, and adequate serum T_3 is required for maximum α -MHC expression.

Table 1 Effect of T ₃ on cardiac-specific genes	
Positively Regulated	Negatively Regulated
Alpha-myosin heavy chain	Beta-myosin heavy chain
Sarcoplasmic reticulum Ca ²⁺ -ATPase	Phospholamban
Na ⁺ /K ⁺ -ATPase	Adenylyl cyclase catalytic subunits
Beta1-adrenergic receptor	Thyroid hormone receptor alpha-1
Atrial natriuretic hormone	Na ⁺ /Ca ²⁺ exchanger
Voltage-gated potassium channels	Thyroid hormone transporters (MCT8,10) Adenine nucleotide translocase-1 (ANT1)

Download English Version:

https://daneshyari.com/en/article/3267780

Download Persian Version:

https://daneshyari.com/article/3267780

<u>Daneshyari.com</u>