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Abstract

The hyperspherical hidden crossing method (HHCM) is used to investigate positron impact ionization of hydrogen near threshold. An
important feature of this method is that it can provide valuable insight into scattering processes. In the calculation of positron–hydrogen
ionization, the adiabatic Hamiltonian is expanded about the Wannier saddle point; anharmonic corrections are treated perturbatively.
The S-wave results are consistent with the Wannier threshold law and with the extended threshold law that was previously derived using
the HHCM. We have extended the previous HHCM calculation to higher angular momenta L and have calculated the absolute ioniza-
tion cross-section for L = 0, 1 and 2. The HHCM calculation confirms that the S-wave ionization cross-section is small and provides the
reason why it is small. The HHCM ionization cross-section (summed over the lowest partial waves) is compared with a convergent close-
coupling calculation, a 33-state close-coupling calculation and experimental data.
� 2007 Elsevier B.V. All rights reserved.
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1. Introduction

The process of positron impact ionization of hydrogen
near threshold is a particularly sensitive test of three-parti-
cle correlations. The cross-section for positron–hydrogen
ionization has been measured in the energy range 15–
700 eV [1]. Measurements close to threshold have been
made for positron impact ionization of helium and molec-
ular hydrogen [2,3].

Using a classical treatment, Wannier obtained a thresh-
old law for the cross-section rðEÞ for electron impact
ionization of neutral atoms:

rðEÞ / Ef; ð1Þ

where E is the excess energy and the exponent is 1.127 [4].
Klar extended Wannier’s theory to positron impact ioniza-

tion and showed that f ¼ 2:65011 [5]. The near threshold
measurements of positron impact ionization [2] are in ac-
cord with the Wannier threshold law [5] in that the cross-
section could be fitted to a power law, but the value of
the exponent is smaller than predicted.

The near-threshold measurements for helium [2] have
been interpreted by two different calculations. The first of
these calculations was an extension of the Wannier thresh-
old law to higher energies [6,7]. This extension was
achieved by expanding the adiabatic Hamiltonian about
the saddle point and using the hyperspherical hidden cross-
ing method (HHCM) [8] to take into account perturbative-
ly the correction terms. The calculation was limited to the
S-wave, and the cross-section computed was relative. The
second calculation was quantal-semiclassical [9] and
stressed the importance of higher partial waves for inter-
preting the data.

The HHCM is ideally suited for treating the near-
threshold region of positron–hydrogen ionization.
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Previously, the HHCM successfully described near-thresh-
old electron impact ionization of hydrogen [8,10]. In addition,
the method provided an explanation for the very small
S-wave cross-section for ground-state positronium forma-
tion in positron–hydrogen collisions [11]. An important
feature of the HHCM is that it does not suffer from over-
completeness, which can be a problem with standard close-
coupling (CC) calculations that expand the wave function
about both the target and positronium states. In addition,
the HHCM does not yield ill-conditioned numerical equa-
tions, which is a problem with a full convergent close-cou-
pling (CCC) calculation in the near-threshold region [12].

In this paper, we extend the earlier HHCM analysis of
near-threshold positron–hydrogen ionization [6,7] to
higher partial waves and to the calculation of the absolute
ionization cross-section for total angular momentum
L = 0, 1 and 2. In Section 2, we present the application
of the HHCM to near-threshold positron–hydrogen ioniza-
tion. In Section 3, we present our results and compare them
with an S-wave model CCC calculation [12], a full CCC
calculation [12], a 33-state CC calculation [13] and experi-
mental data [1]. We give concluding remarks in Section 4.
Atomic units are used throughout this paper.

2. Application of the HHCM to near-threshold
positron–hydrogen ionization

2.1. Expansion of the eigenvalue 2R2e0ðRÞ

The HHCM [8] for positron–hydrogen collisions is for-
mulated by using hyperspherical coordinates, which are the
hyperradius R ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
r2
þ þ r2

�
p

and the two hyperangles
a ¼ tan�1ðr�=rþÞ and h ¼ cos�1ð̂rþ � r̂�Þ, where rþ and r�
are the position vectors of the positron and electron,
respectively, relative to the proton [14]. The Schrödinger
wave function w depends on R, a, h and the three Euler
angles ðx1;x2;x3Þ which specify the orientation of the
body fixed frame. The reduced wave function is defined as

WðR;XÞ ¼ R5=2 sin a cos awðR;XÞ; ð2Þ

where X represents the two hyperangles and the three Euler
angles. The Schrödinger equation is expressed as

� o
2

oR2
þ K2 þ 2RCða; hÞ

R2
� 2E

� �
WðR;XÞ ¼ 0; ð3Þ

where K2 is the grand angular momentum operator [14]
and

Cða; hÞ ¼ 1

cos a
� 1

sin a
� 1

ð1� sin 2a cos hÞ1=2
ð4Þ

is the reduced potential. The adiabatic Hamiltonian is
1
2
½K2 þ 2RCða; hÞ�. The adiabatic basis functions ulðR; XÞ

are found by holding R fixed and solving

½K2 þ 2RCða; hÞ�ulðR; XÞ ¼ 2R2elðRÞulðR; XÞ: ð5Þ

The reduced potential Cða; hÞ has a saddle point at
ða0; h0Þ ¼ ð0:4347; 0Þ, corresponding to the collinear config-
uration of the proton, electron and positron in which the
ratio of the lengths is r�=rþ ¼ 0:4643. For ionization, the
wave function is localized around the saddle point as
R!1.

We first obtain the expansion of the eigenvalue 2R2eðRÞ
about the saddle point for L ¼ 0. In this case since the
grand angular momentum operator depends only on a
and h, Eq. (5) can be written as

� o
2

oa2
� 1

sin2 a cos2 a

o
2

oh2
þ cot h

o

oh

� �
þ 2RCða; hÞ

� �
ulðR; a; hÞ ¼ 2R2e0lðRÞulðR; a; hÞ; ð6Þ

where

e0lðRÞ ¼ elðRÞ þ
1

8R2
: ð7Þ

We define coordinates x ¼ a� a0 and y ¼ h� h0 and ex-
pand the Hamiltonian about the point ðx; yÞ ¼ ð0; 0Þ:

� o2

ox2
� fB0 � B1xþ B2x2 þ � � �g

�
� o

2

oy2
þ 1

y
� 1

3
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� �
o

oy

� �
þ 2Rf�C00 � C20x2 þ C02y2

þ C12xy2 � C30x3þC22x2y2 � C40x4 � C04y4 þ � � �g
�

� uðR; x; yÞ ¼ 2R2e0ðRÞuðR; x; yÞ; ð8Þ

where the expansion coefficients Bj and Cjk, are defined by

Bj ¼
1

j!
dj

dxj

1

sin2ðxþ a0Þ cos2ðxþ a0Þ

" #
x¼0

					
					 j ¼ 0; 1; 2;

ð9Þ

and

Cjk ¼
1

j!k!

ojþk

oxjoyk
Cðxþ a0; yÞ

� �
x¼0;y¼0

					
					 j; k ¼ 0; � � � ; 4;

ð10Þ

respectively.
Retaining only the lowest order terms gives a partial dif-

ferential equation that is separable in x and y:

½p2
x � 2RC20x2 þ B0p2

y þ 2RC02y2 � 2RC00�uðR; x; yÞ
¼ 2R2e0ðRÞuðR; x; yÞ; ð11Þ

where

p2
x ¼ �

o2

ox2
ð12Þ
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y
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: ð13Þ
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