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When Bile Acids Don’t Get Amidated

See “Genetic defects in bile acid conjugation
cause fat-soluble vitamin deficiency,” by
Setchell KDR, Heubi JE, Shah S, et al, on page
945.

Bile acids are attracting increasing attention in the
medical community because they do not only fulfill a

long-known role of micellar solubilizers,1 mediating the
intestinal uptake of dietary fats and fat-soluble vitamins,
but have been unraveled more recently as potent signaling
molecules and metabolic integrators both in and outside
the liver.2 Consequently, a number of bile acid analogs are
being tested as potential therapeutic agents for hepatic
and extrahepatic diseases.2 Bile acid synthesis3 as well as
secretion and re-uptake of mainly glycine- and taurine-
conjugated bile salts4 represent key functions of the human
liver: Conjugated bile salts form two thirds of organic com-
pounds in human bile and are efficiently recycled via the

enterohepatic circulation, as first described by Reverhorst
and Borelli 3 centuries ago. In liver, bile acids directly mod-
ulate their hepatocellular uptake, synthesis, and biliary se-
cretion at both the transcriptional level (via activation of bile
acid-sensitive nuclear receptors such as farnesoid X receptor
or pregnane X receptor), and at the posttranscriptional and
posttranslational levels via modulation of diverse signaling
cascades.5 In extrahepatic tissues, expression of the mem-
brane bile acid receptor TGR5 sensitizes cells to high levels of
hydrophobic bile salts.6

Bile acid synthesis from cholesterol is restricted to the
liver and represents the major catabolic pathway of cho-
lesterol responsible for about 90% of its breakdown. Bile
acid synthesis requires 17 enzymatic reactions in different
subcellular compartments of the hepatocyte (Figure 1)3

and its key enzymatic steps are tightly regulated by nu-
clear hormone receptors, other transcription factors, and
posttranscriptional signaling chains.2 The end products
are glycine- and taurine-conjugated bile acids, which are
effectively secreted into bile with �2% of bile acids re-
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maining in the unconjugated form.7 Various genetic de-
fects in bile acid synthesis have been identified in the past
(Figure 1). Their clinical manifestations may range from
liver failure in early childhood to cirrhosis or progressive
neuropathy in the adolescent or adult.8,9

In the present issue of GASTROENTEROLOGY, Setchell et
al10 describe 10 pediatric patients with a defect of the last
step of bile acid synthesis, a peroxisomal bile acid conju-
gation defect, namely, amidation with glycine or taurine
in the C24 position of the bile acid molecule (Figure 1). A
key clinical finding in these pediatric patients, in whom
the diagnosis was made between 3 months and 14 years of
age, was the deficit of fat-soluble vitamins and its se-
quelae, severe coagulopathies and/or rickets in half of

them. In contrast with most other defects in bile acid
synthesis, serum liver tests and/or liver histology were not
regularly affected in those children who had undergone
blood testing or liver biopsy.

The biochemical and clinical data clearly show the
importance of conjugated bile acids for the absorption of
fat-soluble vitamins in the small intestine. Conjugation of
bile acids with glycine or taurine, in healthy humans at a
ratio of about 3:1,7 increases the molecular weight and, at
least for the taurine conjugate, markedly lowers the pKa,
thereby enhancing aqueous solubility and decreasing car-
rier-independent uptake into duodenal or jejunal mucosa
cells of the negatively charged bile salt molecule at the pH
of the small intestine. In contrast, unconjugated proton-

Figure 1. Biosynthesis of bile
acids. Primary bile acids cheno-
deoxycholic acid and cholic acid
are synthesized from cholesterol
in the human liver via the neutral
and to a much lesser extent via
the acidic pathway that is of par-
ticular relevance in the first pe-
riod of life. Enzymes for which
inborn errors of metabolism have
been characterized are given in
italics. The diseases are usually
named by the defective enzyme,
followed by deficiency, namely,
3�-hydroxysteroid-�5-C27-ste-
roid dehydrogenase deficiency.
Sterol 27-hydroxylase deficiency
causes cerebrotendinous xantho-
matosis (CTX). Zellweger syn-
drome is among the peroxisomal
defects. Setchell et al10 describe
patients with mutations in the
gene BAAT encoding the bile ac-
id-CoA: aminoacid N-acyl trans-
ferase (highlighted in green).
Modified with kind permission
from Springer Science and
Business Media.8

Editorials, continued

871



Download English Version:

https://daneshyari.com/en/article/3294660

Download Persian Version:

https://daneshyari.com/article/3294660

Daneshyari.com

https://daneshyari.com/en/article/3294660
https://daneshyari.com/article/3294660
https://daneshyari.com

