Index to CMN, Vol. 29, 2007

Subject Index

Actinomycetes and molecular techniques for identification, 19:148-149

Adolescent immunization progress, 19:143-148 human papillomavirus vaccine and, 19:146-147

adolescent vaccination and, 19:147 disease epidemiology and, 19:146-147 vaccine recommendations for, 19:147

meningococcal disease and, 19:145 outbreaks of, 19:145

two meningococcal vaccines and, 19:145-146

> ACIP recommendations for, 19:146 Guillain-Barré syndrome and, 19:146

pertussis booster and, 19:143

pertussis infection and, 19:143-144

adolescents and, 19:144-145 boosting immunity in, 19:145

incidence of, 19:144

Antibiotic-mediated bacterial filamentation as a laboratory phenomenon, 3:22-24

mechanism of by β-lactam antibiotics, 3:23, 23f

Serratia marcescens in burn patient and, 3:22-23, 22t, 22f

Arbovirus infections resulting from flooding, 8:59

Aspergillosis galactomannan antigenemia test, 1:4-5

Bacteremia

with Cupriavidus pauculus, 4:30-32

with Dietzia maris, 19:148-149

with Micrococcus luteus, 22:173-175

with Yersinia pseudotuberculosis, 10:76-77

Bacteroides spp. resistance gene transfer in intestinal tract, 3:19-21

Biliary tract infection with Listeria monocytogenes, 1:6-8

Biological safety cabinets (BSC) in

microbiology laboratories, 14:105-111 as a primary engineering control (PEC),

basic concepts of, 14:105

cabinet classification of, 14:106-109

Class I BSC description, 14:107

Class II BSC description, 14:107-108 types of, 14:107-108, 107f, 108f

Class III BSC description, 14:108

ensuring proper performance of, 14:109

air balancer and, 14:111 certification documentation for,

14:110-111

factory/NSF testing (Annex A), 14:109 field testing - certification (Annex F), 14:109-110

HEPA filters and, 14:105-106

definition of, 14:105

penetrating particle size and, 14:106 unidirectional airflow and, 14:106, 106f

installation and venting considerations for, 14:108-109

Bioterrorism agents

Burkholderia mallei as, 9:65

Burkholderia pseudomallei as, 9:65 antimicrobial susceptibility of, 9:68 recommendations vs oxacillin for use of, 5:36 roles of alternative tests with use of, 5:38

Staphylococcus species with, 5:33-34, 35t

BK virus in the transplant patient, 16:121-128

kidney infection with, 16:122-123

pathophysiology of, 16:122

urine cytology for, 16:123

viral culture for, 16:123

viremia and, 16:124-125

viruria and, 16:123-124

Blastomycosis antigen detection, 1:4

BSC See biological safety cabinets

genomovars of, 9:66,66t

from tsunamis, 8:60

16:126

Burkholderia cepacia

Burkholderia spp.

B. mallei

ecology of, 9:65

serology of, 16:123

diagnosis of, 16:122-123, 125f

latency and reactivation in, 16:121-122

molecular methods for, 16:123-125

non-renal solid-organ transplant and,

taxonomy and structure of, 16:121

antimicrobial susceptibility of, 9:68

involvement in cystic fibrosis of, 9:66

antimicrobial susceptibility of, 9:68

as human pathogens, 9:65-67,66t

pathogens, 9:65-66

Burkholderia pseudomallei infections resulting

B. cepacia complex as nosocomial

cystic fibrosis and, 9:66-67

as bioterrorism agent, 9:65

nomenclature and resistance of, 9:65-69

use of genetic methods for, 9:67

multiple combination bactericidal

CDC group IVc-2 See Cupriavidus pauculus

as surrogate for all β-lactam agents, 5:33

as surrogate for oxacillin susceptibility

staphylococci of, 5:34-36,36t

predicting mecA-mediated resistance in

as glanders agent, 9:65

genomovars of, 9:66, 66t

resistance mechanisms of, 9:67

species identification of, 9:67

testing and, 9:68

performance characteristics for

synergy testing and, 9:68

taxonomy of, 9:65

Cefoxitin disk test, 5:33-40

testing, 5:33

biofilm formation and, 9:67

susceptibility testing and, 9:67-68

B. gladioli in, 9:67

bone marrow transplantation for, 16:125-126

hemorrhagic cystitis and, 16:125-126

mecA PCR, 5:38

oxacillin salt agar screen, 5:38 PBP2a latex tests, 5:38

quality control for, 5:39

Cefoxitin use in selective media for MRSA,

5:38

Cellulitis

adjunctive measures for, 20:156

clinical microbiology laboratory and,

20:151-158

clinical problems of, 20:151

diabetic foot and, 20:156

management of, 20:156

gram-negative bacilli and, 20:155 immunocompromised patient and, 20:156

S. aureus and, 20:154

detecting methicillin resistance and,

20:154

antimicrobial therapy and, 20:154 genes conferring virulence of, 20:154

mode of spread of, 20:154-155

MRSA carrier state and, 20:155

toxic shock syndrome and, 20:155

streptococci and, 20:151-154, 153f

clinical characteristics and, 20:151-152

necrotizing fasciitis and, 20:152 antimicrobial therapy and, 20:152

mixed infections and, 20:152

recurrence and, 20:154

serological tests for, 20:154

specimens for, 20:152, 154

traumatic and surgical wounds and, 20:155-156

Cholera resulting from flooding, 8:59

CLIA requirements

for point-of-care testing, 23:177

for real-time PCR, 12:87, 91-93

guideline for diagnosis of mycobacterial infections (M48-P), 13:102

method for testing Candida spp. (M44-A), 13:97, 99t

new documents descriptions, 6:46-47

guidelines for blood cultures, 6:46

methods for antimicrobial dilution and disk susceptibility testing of

infrequently isolated or fastidious bacteria (M45-A), 6:46

methods for antimicrobial

susceptibility testing of anaerobic bacteria; approved standard —

7th ed. (M11-A7), 6:47

performance standards for

antimicrobial susceptibility testing; 17th informational supplement

(M100-S17), 6:46-47

viral culture, approved guideline (M41-A), 6:45

real-time PCR and, See real-time PCR in clinical microbiology

Coccidioides immitis outbreak after earthquake, 8:59

Coccidioidomycosis antigen detection, 1:4

Corneal abscess due to Sutonella indologenes, 18:139-142

taxonomy of organism and, 18:140

Cryptosporidium parvum gastroenteritis

associated with HLA-B27-negative reactive arthritis, 15:119-120

case report of, 15:119-120

laboratory studies in, 15:119

treatment of, 15:119

discussion of, 15:120

Cupriavidus pauculus

antimicrobial susceptibility of, 4:30-31

bacteremia in hemodialysis patient by, 4:30-32

ecology of, 4:31

infections caused by, 4:31

microbiology of, 4:30,31

taxonomy of, 4:31

Cystic fibrosis

Burkholderia cepacia and, 9:66

Burkholderia gladioli and, 9:67

Dietzia maris	Trichoderma as anamorph of, 23:180	and, 13:101
16S rRNA gene sequence analysis of, 19:148	Immunization	method for detecting and, 13:101
antimicrobial susceptibility of, 19:148	in adolescents, 19:143-148	magA virulence genes in strains and, 13:101
bacteremia and, 19:148-149	in infants, 6:41-45	association with hypermucosity
clinical features of, 19:148	Infant immunization progress, 6:41-45	phenotype and, 13:101
conventional microbiology of, 19:148	hepatitis A vaccine use in, 6:42	association with serotype K1 and, 13:101
molecular techniques for identification of,	effect on incidence of disease and, 6:43	proposed pathogenesis of, 13:101
19:148-149	maintaining herd immunity with, 6:43-44	mecA-mediated resistance detection by
phenotypic characteristics of organism and,	impact on infectious disease eradication	cefoxitin disk test, 5:33-40
19:149, 149t	and, 6:42t	Medicare
role in disease of, 19:149	influenza vaccine use in, 6:42-43	local coverage determinations for
Disk diffusion method for yeasts, 13:97-102	relation to morbidity and mortality in	infectious-disease molecular
CLSI method for testing <i>Candida</i> spp.	children of, 6:42-43	diagnostics, 22:169-173
(M44-A), 13:97, 99t	needs assessment of infant hospitalization	defining forces for, 22:169, 170-172,
interpretation and reporting for, 13:99,	in the U.S. and, 6:41-42	171f, 172f
99t	gastroenteritis and, 6:41-42	collaborative forces as, 22:171
NeoSensitabs tablets as alternative for,	jaundice and, 6:41,	evaluative forces as, 22:171-172
13:99-100, 98f	respiratory viruses and, 6:41	regulatory forces as, 22:170-171
procedure for, 13:98, 98f	pediatric immunization schedule and, 6:44t	local vs. national coverage and, 22:170t
quality control for, 13:98-99	recent changes in, 6:42	Social Security Act and, 22:169
ATCC strains for, 13:98, 99t	rotavirus vaccine in, 6:44-45	determining medical necessity and,
standard medium and medium QC for,	new-generation vaccine (RotaTeq)	22:169-170
13:97-98, 99t	clinical studies and, 6:44-45	Meningococcal vaccines for adolescents,
zone interpretive criteria for	problems with early vaccine	19:145-146
fluconazole and voriconazole	(RotaShield) and, 6:44	Methicillin-resistant Staphylococcus aureus
(M44-S1), 13:97, 99t	viral morbidity and economic costs of,	cefoxitin and inducible clindamycin testing
Empyema	6:44	for, 18:138
Ralstonia pickettii and, 7:55-56	RSV vaccine need and, 6:42	effect of inoculum density on, 18:138
Trichomonas spp. and, 9:69-71	anti-RSV-F monoclonal antibody	coagulase and PBP2a testing for, 18:137-
Endocarditis	(palivizumab) use and, 6:42	138, 138f
Streptococcus bovis and, 7:49-51	vaccine-preventable deaths and, 6:42t	detection and identification from positive
clinical diagnosis of, 7:49-50	Influenza vaccine for infant immunization,	blood cultures of, 18:137-139, 138t
treatment of, 7:51	6:42-43	direct susceptibility testing for, 18:139, 138t
Enterotoxigenic <i>Escherichia coli</i> infections	Intestinal tract and resistance gene transfer,	Microbe manipulation of human history, 2:9-16
resulting from flooding, 8:59	3:17-21, 4:25-30	C. acetobutylicum and, 2:14-15, 2:15f
Erythromycin gene transfer among intestinal		disease and the downfall of Rome by, 2:10-11
anaerobes, 4:25-26	commonality with transgenic plant food	Napoleon and, 2:14
	and, 3:17	nitrate fermentation and, 2:14
Giardiasis resulting from flooding, 8:59	antibiotic-resistance gene uptake and,	
Glanders caused by <i>Burkholderia mallei</i> , 9:65	3:17	Walcheren and, 2:14
HEPA filters in BSC, 14:105-106	gram-positive anaerobes as ignored	Phytophtera infestans and, 2:14
Hepatitis A vaccine for infant immunization,	majority in, 4:25-26	plague and the Golden Age of Greece and,
6:43-44	transfers with gram-negative bacteria	2:10
Histoplasmosis antigen assays, 1:1-4	and, 4:25-26, 26f	religions saved by, 2:9-10
History manipulation by microbes, 2:9-16	erythromycin resistance genes and,	smallpox in the American Revolution and,
Human papillomavirus	4:25-26	2:11-13
association with cervical cancer of, 21:159-	problem of antibiotic use in animals, fruit	yellow fever virus and, 2:13-14
160	trees, aquaculture and, 3:17-18	Microbes and natural disasters See natural
HPV types and, 21:159, 160t	role of bacteria in reservoir hypothesis and,	disasters and microbes
detection of and utility of testing for,	3:18, 3:18f	Micrococcus spp.
21:159-167	conjugative transposons and, 3:19,20,	as opportunistic pathogens, 22:174
diagnosis of, 21:160	4:26-27	susceptibility testing of, 22:174-175
conventional cytology for, 21:160, 161t	evidence for in transfer among normal	bacteremia with pulmonary hypertension
DNA detection of, 21:160-162	intestinal microflora, 3:19-21	and long-term central venous catheter,
clinical utility of, 21:162-164	Bacteroides spp. and, 3:3:19-20	22:173-175
testing protocols and, 21:162-	regulated transfer and, 4:27	culture and identification of, 22:174
164, 164f	types of resistance genes among	treatment of, 22:174
hybrid capture for, 21:161	intestinal flora and, 3:19	Mold contamination and hurricanes, 8:59
PCR for, 21:161-162	transfers between bacteria and human	MRSA infections resulting from hurricanes, 8:59
secondary markers and, 21:164-165	mucosal cells, 4:27-28	Multiplexed suspension array technology
monolayer cytology for, 21:160	Leptospirosis resulting from flooding, 8:58-59	detection of infectious pathogens,
natural history in men and woman of,	Listeria monocytogenes biliary tract infection,	11:79-86
21:159-160	1:6-8	Luminex xMAP system for, 11:79-86
prevention of, 21:165	case report of, 1:6-7	immunoassays and, 11:80-82
vaccine and, 21:165	treatment of, 1:7	assay description of, 11:80, 81f
Hypocreaceae sp. from human lung tissue,	Liver disease	biothreat agents and, 11:81
23:180-184	Streptococcus bovis and, 7:52	foodborne illnesses and, 11: 80
clinical report of, 23:180-181	magA+ Klebsiella pneumoniae causing	influenza viruses and, 11: 80-81
	pyogenic liver abscess, 13:100-102	
molecular identification of, 23:181-183, 182t, 183f	1. 0	serological applications and,
· · · · · · · · · · · · · · · · · · ·	K1 strain prevalence in Western and Asian	11:81-82, 81f
mycological investigation of, 23:181, 181f	countries and, 13:101-102	instrument description and, 11:80
susceptibility tests of, 23:183	magA gene presence in Spanish isolates	nucleic acid applications of, 11:82-85, 85f

Download English Version:

https://daneshyari.com/en/article/3345520

Download Persian Version:

https://daneshyari.com/article/3345520

<u>Daneshyari.com</u>