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a b s t r a c t

High-resolution haplotype frequency estimations and descriptive metrics are becoming increasingly
popular for accurately describing human leukocyte antigen diversity. In this study, we compared sample
sets of publically available haplotype frequencies from different populations to characterize the
consequences of unequal sample size on haplotype frequency estimation. We found that for low samples
sizes (a few thousand), haplotype frequencies were overestimated, affecting all descriptive metrics of the
underlying distribution, such as most frequent haplotype, the number of haplotypes, and the mean/
median frequency. This overestimation was a result of random sample fluctuation and truncation of
the tail end of the frequency distribution that comprises the least frequent haplotypes. Finally, we
simulated balanced datasets through resampling and contrasted the disparities of descriptive metrics
among equal and unequal datasets. This simulation resulted in the global description of the most
frequent human leukocyte antigen haplotypes worldwide.
� 2015 American Society for Histocompatibility and Immunogenetics. Published by Elsevier Inc. All rights

reserved.

1. Introduction

The term ‘‘haplotype’’ was first coined by Ruggero Ceppellini in
1955 [1] to describe the co-occurrence of genetic polymorphisms
of the HLA alleles along a single chromosome. Haplotypes have
become the basic unit of analysis for studying humans as well as
other organisms [2]. Haplotypes may be represented as blocks of
DNA sequence variants that can be abstracted into allelic
nomenclature at the level of a functional locus such as in the
HLA system [3].

HLA genetic polymorphisms have been primarily studied in
transplantation. As a pivotal factor in the transplantation outcome,
HLA is one of the most preeminent genetic determinants in health

care. Generally, HLA typing is performed for clinical purposes
rather than for research purposes [4]. The immunogenetics com-
munity utilizes haplotype frequency data in proactive ways that
go far beyond the scope of classical research interests in population
and evolutionary genetics [5,6]. As such, haplotype frequencies are
used for managing bone marrow donor registries [7–9] through
prioritized lists of potentially matched donors that can be searched
(Optimatch at ZKRD, Haplologic at NMDP, Easymatch in France),
for targeting donor recruitment, optimal registry size computation,
and optimal recruitment strategies, and for assessing cost of typing
quality versus issue benefits [10–12].

Optimal study design and sample acquisition are dependent on
the possibility of identifying haplotypes by segregation analysis of
families or estimating haplotypes from population samples of
phase-unknown unrelated individuals. The extreme polymor-
phisms of immunogenetic data present the following statistical
modeling challenges: (1) the field is frequently plagued by very
large sample sizes (>10,000 subjects); (2) low number of loci
(approximately <20); (3) a large number of alleles per loci
(approximately >50); and (4) high haplotype diversity (at least
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>1000). Advanced statistical methods are needed to provide reli-
able frequencies, although these are outside the scope of this work
and have been studied previously regarding their general [13] and
HLA-specific aspects [14,15]. Many haplotype frequencies have
been published and represent a useful source of information
describing the high diversity of HLA haplotype polymorphisms
across populations [16,17]. Although much information is available
on the dbMHC web site (http://www.ncbi.nlm.nih.gov/projects/gv/
mhc/), this study reports the effort to provide a publically available
collection of valuable HLA haplotype frequencies in an existing
central repository. We investigated the role of sample size in the
fluctuation of HLA haplotype frequency distributions, which may
impact the results of studies using these estimations.

2. Materials and methods

2.1. Data sets

High-resolution HLA haplotype frequency datasets were identi-
fied and collected. Only those datasets in which the entire set of
haplotype frequencies were made publically available [18–23]
and that included a set of high-resolution HLA haplotype frequen-
cies from the French Bone Marrow Donor Registry (France Greffe
de Moelle) [24] were collected. We focused on high-resolution typ-
ing data of the HLA-A, HLA-B, and HLA-DRB1 alleles and on sample
sizes exceeding 1000 (as of January 2012). Published data were
made available through the Allele Frequency Net Database [25].
HLA haplotype frequencies were estimated using the expecta-
tion-maximization (EM) algorithms [26]. Investigation of the prop-
erties of the EM algorithm was not performed in this study because
selected samples were used and because methods to account for all
types of HLA typing results are still undergoing extensive discus-
sion [15]. In this study, population refers to original datasets.

2.2. Population statistics

Several statistics were calculated to describe and compare hap-
lotype frequencies between populations. These metrics included
calculations of mean and median haplotype frequencies, the 25th
and 75th percentiles of haplotype frequencies, the number of
unique haplotypes, the sum of haplotype frequencies within a
given range (e.g., the top 10), the minimum number of haplotypes
that sum to a defined percentage (e.g., sum to 10%), and the num-
ber of haplotypes greater than or equal to a defined threshold (e.g.,
greater than 10%).

2.3. Random sampling of datasets

Effects of sample size were determined by taking 1000 random
simulations from the French sample of haplotype distribution and
generating samples with decreasing sizes for analysis. In each
simulation, HLA-A, HLA-B, and HLA-DRB1 haplotype frequencies
were assumed to be known because they have been generated
from a set of published haplotypes with specified frequencies.
These included sample sets of (N=) 100, 250, 500, 1000, 2000,
2500, 5000, 10,000, 15,000, and 20,000 individuals with 2N sets
of haplotype. The statistics for each individual were recalculated
and averaged across all individuals within each sample set. To
make comparisons between different ethnic groups with equal
sample sizes, the process was repeated with the datasets from each
ethnic group and by setting the resampled population size to 1000
individuals. R software [27] was used to generate randomly
sampled datasets and to calculate and graph all metrics.

3. Results

HLA frequency data were identified and collected from 13 data-
sets that spanned 11 populations, including European American,
Asian American, and African American (Table 1). Table 1 demon-
strates that for these datasets, several descriptive metrics differen-
tiate the distributions of population haplotype frequencies. In all
populations, there were only a few of the ‘‘most frequent’’ haplo-
types (i.e., estimated frequency >1%). However, given the hetero-
geneity in sample sizes, direct comparisons cannot be made with
confidence without understanding the effect of sample size on
haplotype frequency estimations and distributions.

To test how sample size may affect the distribution of haplotype
frequencies, the French haplotype distribution was sampled at ran-
dom to create datasets of decreasing size and ranging from 100 to
20,000 individuals (Table 2). The same metrics as in Table 1 were
compared across the reduced datasets, and all metrics demonstrat-
ed variable dependency based on sample size. Thus, variations in
sample size affected the calculated metric. Log–log relations were
observed for sample size relative to the number of haplotypes, the
mean, the median, or any percentile cut-off computed from the
distribution (Table 2 and Supplemental Fig. 1). Rectangular hyper-
bolic relations were observed between the log of the sample size
and the log of either the sum of a given quantity of haplotypes or
the minimum number of haplotypes that sum to a defined frequen-
cy threshold (Table 2 and Supplemental Fig. 2). The asymptotic
nature of these log–log relationships suggests that for reasonably
large samples (sizes >2000), differences in the sample size have
increasingly smaller effects on the calculated metric. Finally, as
the sample size decreased, the slope of the linear fit between the
logged haplotype frequencies and their logged rank became
increasing smaller (Fig. 1), demonstrating a log–log relation
between the slope and sample size (Fig. 1, inset) (see Table 3).

Smaller sample sizes capture the most common haplotypes, and
any increase in population size adds to the haplotype diversity;
there were infrequent contributions from the rarest haplotypes.
Consequently, the sample size affected the number of haplotypes
whose frequencies were greater than a given threshold. On aver-
age, haplotype frequencies are overestimated in the smaller
populations (Table 2 and Supplemental Fig. 3, red shaded region).
In these datasets, smaller population sizes fail to capture the con-
tribution from less common or rarer haplotypes; therefore, the fre-
quency of these truncated alleles is redistributed to the more
common haplotypes, resulting in an overestimation of their fre-
quency. However, setting a threshold for comparison that is low
compared with the sample size (e.g., the number of haplotypes
whose frequency is greater than 0.01% in samples of less than
2000 individuals) can result in underestimation of haplotype fre-
quency (Table 2 and Supplemental Fig. 3, blue shaded region).

To further refine how sampling fluctuation may affect the fre-
quency estimation for individual haplotypes, the French dataset
was resampled with N = 1000. The differences between the original
haplotype frequency (reference) and the resampled haplotype fre-
quency (sample) were plotted for each haplotype against the origi-
nal haplotype frequency (Fig. 2). As expected, Fig. 2 shows that
because of random sampling, frequencies may be overestimated
(Fig. 2, red dots) or underestimated (Fig. 2, blue dots), and these
deviations from the reference converged at discrete points given
by the formula x/2N, where x corresponds to the haplotype count
(e.g., 1, 2, 3) and N corresponds to the number of subjects within
the sample set (2N is the number of haplotypes). The absolute
minimum frequency for one haplotype that can be observed in
1000 individuals is 1/2000 or 0.05%. These minimum convergences
exist at 0.05% (1/2000) and 0.1% (2/2000), whereas trends toward
the minimum can be seen at 0.15% (3/2000) and 0.2% (4/2000).
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