

Contents lists available at SciVerse ScienceDirect

Programmed death-1 (PD-1)/PD-1 ligand pathway-mediated immune responses against human T-lymphotropic virus type 1 (HTLV-1) in HTLV-1-associated myelopathy/tropical spastic paraparesis and carriers with autoimmune disorders

Tomohiro Kozako ^{a,b,*}, Makoto Yoshimitsu ^c, Masaki Akimoto ^c, Yohann White ^a, Kakushi Matsushita ^c, Shinji Soeda ^b, Hiroshi Shimeno ^b, Ryuji Kubota ^a, Shuji Izumo ^a, Naomichi Arima ^{a,*}

ARTICLE INFO

Article history: Received 20 September 2010 Accepted 25 July 2011 Available online 2 August 2011

Keywords: Human T-lymphotropic virus-1 Cytotoxic T lymphocyte Programmed death-1 Programmed death-ligand 1 T-cell costimulation

ABSTRACT

Human T-lymphotropic virus-1 (HTLV-1) causes HTLV-1-associated myelopathy/tropical spastic paraparesis (HAM/TSP) and adult T-cell leukemia–lymphoma in individuals with dysfunctional immune responses. In this study, to characterize the HTLV-1-specific cytotoxic T lymphocyte (CTL) populations in asymptomatic HTLV-1 carriers (ACs), HAM/TSP patients, and carriers with autoimmune disorders (CAIDs), we examined the role of programmed death-1 and its ligand (PD-1/PD-L1) in HTLV-1-specific CTL functions using an HTLV-1 Tax/HLA-A*0201 tetramer and an HTLV-1 Tax/HLA-A*2402 tetramer. Interestingly, the percentage of HTLV-1 Tax301–309/HLA-A*2402 tetramer+CD8+ cells expressing PD-1 in ACs was significantly higher than the percentage of HTLV-1 Tax11–19/HLA-A*0201 tetramer+CD8+ cells expressing PD-1. PD-1 expression was significantly downregulated on HTLV-1-specific CTLs in HAM/TSP compared with ACs. PD-L1 expression was observed in a small proportion of unstimulated lymphocytes from ACs and was greater in ACs than in HAM/TSP and CAIDs after short-term culture. Furthermore, CTL degranulation was impaired in HAM/TSP, whereas anti-PD-L1 blockade significantly increased CTL function in ACs. Downregulation of PD-1 on HTLV-1-specific CTLs and loss of PD-L1 expression in HAM/TSP and CAIDs, along with impaired function of HTLV-1-specific CTLs in HAM/TSP, may underlie the apparently dysfunctional immune response against HTLV-1.

© 2011 American Society for Histocompatibility and Immunogenetics. Published by Elsevier Inc. All rights reserved.

1. Introduction

Human T-lymphotropic virus-1 (HTLV-1) causes HTLV-1-associated myelopathy/tropical spastic paraparesis (HAM/TSP) and adult T-cell leukemia–lymphoma (ATL) after long-term infection [1–4]. The immune response to HTLV-1 is typically enhanced in HAM/TSP, whereas impaired cell-mediated immunity has been implicated in ATL [5–7]. A variety of autoimmune-like disorders are seen in HTLV-1-infected individuals [8], although the precise relationship between these disorders and HTLV-1 infection remains unclear [9–11].

Natural infection of goats with caprine arthritis encephalitis virus results in an arthropathy that mimics human rheumatoid arthritis (RA) [12]. HTLV-1 infection is a risk factor for the development of RA [13]. Endogenous murine retroviruses are involved in the etiology of a systemic lupus erythematosus (SLE)-like disease in specific inbred strains of mice [14]. Indeed, patients with SLE and

E-mail address: kozako@fukuoka-u.ac.jp (Tomohiro Kozako); nao@m2. kufm.kagoshima-u.ac.jp (Naomichi Arima).

concomitant HTLV-1 infection seem to have a more indolent clinical course compared with that of patients with SLE who are not infected with HTLV-1 [15]. Transgenic mice carrying retrovirusspecific genes, including HTLV-1 Tax, show autoimmune-like pathology, suggesting that these viruses have the potential to induce autoimmune disorders [16,17]. However, HTLV-1 is also associated with polyarthritis and proliferative synovitis, known as HTLV-1associated chronic inflammatory arthropathy, in some HTLV-1 seropositive individuals [18,19]. In addition, there is serologic evidence linking HTLV-1 to Sjögren's syndrome (SS). In the Nagasaki region of Japan, where HTLV-1 is endemic, there is a high prevalence of anti-HTLV-1 antibodies, and 36% of SS patients are positive for these antibodies [20]. In another study from the same region, SS patients exhibited high serum reactivity to HTLV-1 (23%) compared with only 3% of the general population [10] and a high prevalence of HAM/TSP [21,22]. HTLV-1 infection may also play a role in the etiology of animal autoimmune disorders, and the pathogenesis of these diverse autoimmune conditions may be similar, but still different from HAM/TSP. At present, it is not known whether the HTLV-1 Tax-specific cytotoxic T lymphocytes (CTLs) involved in

^a Center for Chronic Viral Diseases, Graduate School of Medical and Dental Sciences, Kagoshima University, Kagoshima, Japan

^b Department of Biochemistry, Faculty of Pharmaceutical Sciences, Fukuoka University, Fukuoka, Japan

^c Department of Hematology and Immunology, Kagoshima University Hospital, Kagoshima, Japan

^{*} Corresponding authors.

HAM/TSP are similar to, or different from, those observed in HTLV-1-associated autoimmune disorders.

Negative immunoregulatory programmed death-1 (PD-1) signaling is involved in autoimmunity, allergy, sites of immune privilege, and antitumor immunity [23–26]. Sharpe et al. demonstrated that PD-1/PD-1 ligand (PD-L1) interactions control the induction and maintenance of peripheral T-cell tolerance and indicated a previously unknown function of PD-L1 on nonhematopoietic cells in protecting tissues from autoimmune attack. The PD-1/PD-L1 pathway may also be exploited by a variety of microorganisms to attenuate antimicrobial immunity and facilitate chronic infection [25].

We previously reported on the repertoire, function, and upregulation of PD-1 expression on HTLV-1-specific CTLs in asymptomatic HTLV-1 carriers (ACs) and ATL patients [27,28]. This increased PD-1 expression suggests that PD-1 signaling plays a role in fostering persistent HTLV-1 infection, facilitating immune evasion by ATL cells, and thereby furthering ATL development [29]. However, despite recognition of the PD-1/PD-L1 pathway in immune dysregulation, there are no reports regarding the PD-1 expression of HTLV-1-specific CTL in diseases related to HTLV-1-host immune responses, such as HAM/TSP or other autoimmune disorders.

Both HAM/TSP and autoimmune disorders may be associated with host immune responses to the virus in HTLV-1-infected individuals [8]. The aim of this study was to characterize HTLV-1-specific CTLs in HTLV-1-infected subjects with dysfunctional immune responses, such as HAM/TSP patients and carriers with autoimmune disorders (CAIDs), and compare them with those from ACs. Therefore, we examined PD-1 expression by HLA-A*0201- or HLA-A*2402-restricted HTLV-1 Tax tetramer-specific CTLs in these groups and the effects of PD-L1 blockade on CTL function.

2. Subjects and methods

2.1. Subjects

The subjects enrolled in this study comprised 20 ACs (24–81 years old, mean = 58.3), 30 HAM/TSP patients (34–73 years old, mean = 54.6), and 15 HTLV-1-infected patients with autoimmune disorders (32–80 years old, mean = 59.3), all of whom were recruited through the Kagoshima University Hospital. Patients seropositive for HTLV-1, but without clinical symptoms of HTLV-1-related diseases, were designated ACs. Autoimmune disorders included 7 patients with SS, 5 with SLE, and 3 with RA. The study protocol was reviewed and approved by the Medical Ethical Committee of Kagoshima University.

2.2. Phenotypic analysis

Phenotypic analysis of peripheral blood mononuclear cells (PBMCs) using an HTLV-1 Tax/HLA-A*0201 tetramer, an HTLV-1 Tax/HLA-A*2402 tetramer, a CMV pp65 (QYDPVAALF)/HLA-A*2402 tetramer, an EBV BRLF1 (TYPVLEEMF)/HLA-A*2402 tetramer (Medical and Biological Laboratories, Nagoya, Japan), anti-PD-1 mAbs (eBioscience, San Diego, CA), and anti-PD-L1 monoclonal antibodies (mAbs; MIH1; eBioscience) was performed as previously described [30–32]. PBMCs were screened by serologic staining with mAbs against HLA-A*02 supertype (clone BB7.2) and HLA-A*24 supertype (clone 17A10) (Medical and Biological Laboratories), followed by secondary staining with goat antimouse IgG-FITC (Immunotech, Miami, FL). The cells were then analyzed by flow cytometry using a FACScan cytometer (BD Biosciences, Mountain View, CA). Subjects expressing neither HLA-A*02 nor HLA-A*24 were excluded from the study.

2.3. Intracellular Tax staining assay

PBMCs used for HTLV-1 Tax and PD-L1 expression analysis were cultured for 12 hours and stained as previously described [28]. Briefly, PBMCs (1×10^6) were cultured for 12 hours in complete

medium (CM; RPMI 1640 supplemented with 100 U/mL penicillin, 0.1 mg/mL streptomycin, 0.05 mM 2-mercaptoethanol, 50 U/mL recombinant human interleukin-2, and 10% heat-inactivated fetal calf serum). For cell-surface antigen analysis, PBMCs were labeled with Cy7-conjugated murine anti-PD-L1 mAbs, anti-CD4-PE, and anti-CD25-allophycocyanin antibody (Becton Dickinson, Mountain View, CA). These cells were further treated with permeabilizing solution (Becton Dickinson). After being washed, the cells were incubated with anti-Tax-FITC (clone Lt4; kindly provided by Y. Tanaka, Ryukyu University, Okinawa, Japan). As a negative control, staining was also performed with an isotype control IgG1-FITC for Tax (Becton Dickinson). Lymphocyte analysis was performed using a FACSCalibur (Becton Dickinson) and data were analyzed using FlowJo software (Tree Star, San Carlos, CA).

2.4. CD107a mobilization assay

Assessment of cytolytic ability in the presence of a blocking antibody specific to PD-L1 was performed using flow cytometric quantification of the surface mobilization of CD107a as a marker of degranulation after stimulation, as previously described [27,28]. Briefly, PBMCs (1 \times 10 6) were cultured for 6 hours in CM with or without 0.02 μ M HTLV-1 Tax peptide (Sigma–Aldrich, Tokyo, Japan) in combination with anti-CD107a mAb-FITC (clone H4A3; Southern Biotech, Birmingham, AL) and the secretion inhibitor monensin (Becton Dickinson). A blocking antibody specific to PD-L1 (clone MIH1; eBioscience) was added to the cell cultures at a concentration of 10 μ g/mL. The cells were further stained with HLA-tetramer-PE and anti-CD8 mAb-PE/Cy5 (Beckman Coulter) as previously described [28]. Aliquots of 1 \times 10 4 CD8 $^+$ T lymphocytes were examined using a FACSCalibur and data were analyzed using FlowJo software.

2.5. Statistical analysis

The Mann–Whitney *U* test and the Wilcoxon matched pairs test were performed using StatView software version 5.0 (SAS Institute, Inc., Cary, NC). *p* values < 0.05 were considered significant.

3. Results and discussion

3.1. Frequency and PD-1 expression on the HTLV-1-specific tetramer* cells within the CD8* lymphocyte population

The frequency of CD8⁺ T cells binding the Tax301–309/HLA-A*2402 tetramer ranged from 0.09 to 8.64% (2.78 \pm 3.74) in AC and from 0 to 26.6% (7.56 \pm 8.08) in HAM/TSP. Binding was significantly less in CAIDs compared with that in ACs and HAM/TSP, ranging from 0 to 2.73% (0.76 \pm 0.82; p < 0.05 and p < 0.01, respectively; % \pm SD; Table 1). A similar trend was observed for the HLA-A*0201 tetramer in ACs, HAM/TSP, and CAIDs [32], whereas the frequency of HTLV-1 Tax301–309/HLA-A*2402 tetramer*CD8* cells tended to be lower than that of HTLV-1 Tax11–19/HLA-A*0201 tetramer*CD8* cells. The frequency of CD8* T cells binding the Tax11–19/HLA-A*0201 tetramer was 1.65 \pm 1.43% in AC, 4.99 \pm 5.38% in HAM/TSP, and 0.40 \pm 0.47% in CAIDs (data not shown). Furthermore, the percentage of HTLV-1 Tax301–309/HLA-A*2402 tetramer*CD8* cells expressing PD-1 in ACs was significantly higher than the frequency of HTLV-1 Tax11–19/HLA-A*0201

Table 1The percentage of tetramer⁺ cells within the CD8⁺ lymphocyte populations from ACs, HAM/TSP patients, and CAIDs

	AC	HAM/TSP	CAIDs
HTLV-1 Tax/HLA-A*2402 Tetramer ⁺ cells in CD8 ⁺ cells	2.78 ± 3.74% (N = 20)	$7.56 \pm 8.08\%$ * $(N = 29)$	$0.64 \pm 0.81\%^*$ ($N = 15$)

Results represent the mean \pm SD.

^{*}P < 0.05 versus AC.

Download English Version:

https://daneshyari.com/en/article/3351305

Download Persian Version:

https://daneshyari.com/article/3351305

<u>Daneshyari.com</u>