

Available online at www.sciencedirect.com

PSYCHIATRY RESEARCH NEUROIMAGING

Psychiatry Research: Neuroimaging 156 (2007) 69-74

www.elsevier.com/locate/psychresns

Dopamine D_2/D_3 receptor binding in the anterior cingulate cortex and executive functioning $\stackrel{\sim}{\sim}$

Ville Lumme^{a,b}, Sargo Aalto^{c,a}, Tuula Ilonen^b, Kjell Någren^a, Jarmo Hietala^{a,b,*}

^aTurku PET Centre, University of Turku, c/o Turku University Central Hospital, PO Box 52, FIN-20521 Turku, Finland ^bDepartment of Psychiatry, University of Turku, FIN-20520, Turku, Finland ^cDepartment of Psychology, Åbo Akademi University, Turku, Finland

Received 3 July 2006; received in revised form 22 December 2006; accepted 26 December 2006

Abstract

The objective was to investigate the association between extrastriatal dopamine D_2/D_3 receptor binding and performance on the Wisconsin Card Sorting Test (WCST), a measure of executive functioning. Thirty-two healthy volunteers performed the WCST and underwent positron emission tomography and a high-affinity D_2/D_3 receptor tracer, [¹¹C]FLB 457. All WCST error parameters, in particular nonperseverative errors, correlated positively with [¹¹C]FLB 457 binding in the cognitive division of the right anterior cingulate cortex. An independent voxel-based receptor parametric mapping analysis confirmed these findings. The results indicate that executive functioning in healthy volunteers is modulated by D_2/D_3 receptors in the anterior cingulate cortex. (© 2007 Elsevier Ireland Ltd. All rights reserved.

Keywords: Dopamine; D2 receptor; PET; Anterior cingulate; Executive function; WCST

1. Introduction

The prefrontal cortex is essential for cognitive activity, and its dysfunction may lead to disorders in planning and execution, as well as perseverative and rigid behavior (Goldman-Rakic, 1996; Everett et al., 2001). Dopaminergic regulation contributes markedly to frontally mediated cognitive functions (Nieoullon, 2002). In particular, the role of prefrontal dopamine D_1 receptors in working memory functions is well established (Gold-

E-mail address: jahi@utu.fi (J. Hietala).

man-Rakic et al., 2000). The involvement of striatal D_2 receptors in working memory and executive functioning has been suggested (Volkow et al., 1998; Reeves et al., 2005; Kellendonk et al., 2006), but the role of cortical D_2 receptors has remained elusive (Glickstein et al., 2002; Seamans and Yang, 2004; Wang et al., 2004). In addition to the dorsolateral prefrontal cortex, the anterior cingulate cortex plays a key role in evaluative processes that necessitate stronger engagement of cognitive control (MacDonald et al., 2000; Buchsbaum et al., 2005).

The aim of the study was to evaluate the role of D_2/D_3 receptors in executive functioning in humans. We investigated whether D_2/D_3 receptor binding in the dorsolateral prefrontal cortex and anterior cingulate cortex correlates with cognitive performance involving executive control and working memory. Cortical D_2/D_3 binding was quantified with 3D positron emission

[☆] This work was done in the Department of Psychiatry and Turku PET Centre, University of Turku, Turku, Finland.

^{*} Corresponding author. Department of Psychiatry, University of Turku, Kunnallissairaalantie 20, Building 9, FIN-20700 Turku, Finland. Tel.: +358 2 269 2520; fax: +358 2 269 2528.

^{0925-4927/\$ -} see front matter @ 2007 Elsevier Ireland Ltd. All rights reserved. doi:10.1016/j.pscychresns.2006.12.012

Table 1	
Correlation between selected WCST parameters and regional D2/D3 binding potentia	1

			Number of trials	Errors	Perseverative errors	Nonperseverative errors
Anterior cingulate cortex	Left	r	0.2287	0.2525	0.1971	0.2857
		P	0.233	0.186	0.306	0.133
	Right	r	0.3341	0.4159	0.3683	0.4320
		P	0.077	0.025*	0.049*	0.019**
Amygdala	Left	r	0.1819	0.1948	0.2175	0.1628
		P	0.345	0.311	0.257	0.399
	Right	r	0.2122	0.2395	0.1680	0.2877
		P	0.269	0.211	0.384	0.130
Angular gyrus	Left	r	0.1028	0.0939	0.1055	0.0778
		P	0.596	0.628	0.586	0.688
	Right	r	0.0232	0.0299	0.0291	0.0288
		P	0.905	0.878	0.881	0.882
Dorsolateral prefrontal cortex	Left	r	0.0559	0.0638	0.0346	0.0856
		P	0.773	0.742	0.859	0.659
	Right	r	0.0095	0.0153	-0.0077	0.0345
		P	0.961	0.937	0.969	0.859
Inferior temporal gyrus	Left	r	0.1908	0.1712	0.1143	0.2108
		Р	0.321	0.374	0.555	0.272
	Right	r	0.1331	0.1350	0.1209	0.1391
	-	P	0.491	0.485	0.532	0.472
Middle temporal gyrus	Left	r	0.1239	0.1296	0.1215	0.1288
		P	0.522	0.503	0.530	0.506
	Right	r	0.1187	0.0722	0.0229	0.1112
	-	P	0.540	0.710	0.906	0.566
Superior temporal gyrus	Left	r	0.2723	0.2209	0.1753	0.2473
		P	0.153	0.250	0.363	0.196
	Right	r	0.2227	0.2069	0.2129	0.1889
		P	0.245	0.281	0.268	0.326
Medial prefrontal cortex	Left	r	0.2030	0.2552	0.2148	0.2749
		Р	0.291	0.182	0.263	0.149
	Right	r	0.0751	0.1241	0.1369	0.1053
	-	Р	0.699	0.521	0.479	0.587
Supramarginal gyrus	Left	r	0.1142	0.0897	0.0843	0.0890
		P	0.555	0.644	0.664	0.646
	Right	r	0.0669	0.0475	0.0507	0.0418
	-	P	0.730	0.807	0.794	0.830
Thalamus	Left	r	0.0215	-0.0413	-0.0860	0.0005
		P	0.912	0.832	0.658	0.998
	Right	r	-0.0685	-0.0417	-0.0646	-0.0189
	-	Р	0.724	0.830	0.739	0.922

r, correlation coefficient (partial correlation analysis); P, level of significance; **P<0.025; *P<0.050.

tomography (PET) using a high-affinity dopamine D₂-like receptor tracer [¹¹C]FLB 457 (Farde et al., 1997). Executive functioning was evaluated using the Wisconsin Card Sorting Test (WCST), a task widely used to evaluate frontal lobe function in humans.

2. Methods

2.1. Subjects

Thirty-two healthy non-smoking volunteers with no history of somatic illness, psychiatric disorder or substance abuse were recruited for the study. Three subjects were female and four left-handed. All subjects underwent a 1.5-Tesla magnetic resonance imaging (MRI) scan (Siemens Magnetom) to exclude any structural brain abnormalities and for anatomical reference. The age, weight and height of the subjects were 26.8 ± 4.0 years, 79.2 ± 8.6 kg and 179.7 ± 8.2 cm (mean \pm S.D.), respectively. The body mass index was 24.5 ± 1.7 kg/m².

Written informed consent was obtained in all cases. The study protocols were approved by the Ethical Committee of Turku University/University Hospital, Turku, Finland, and the study was performed in accordance with the Declaration of Helsinki. Download English Version:

https://daneshyari.com/en/article/335888

Download Persian Version:

https://daneshyari.com/article/335888

Daneshyari.com