Contents lists available at ScienceDirect

Transplant Immunology

journal homepage: www.elsevier.com/locate/trim

CD3 mAb treatment ameliorated the severity of the cGVHD-induced lupus nephritis in mice by up-regulation of Foxp3⁺ regulatory T cells in the target tissue: Kidney

Ji-Lu Zhang ^{a,b}, De-Jun Sun ^{a,*}, Chun-Mei Hou ^b, Ying-Lin Wei ^b, Xin-Ying Li ^b, Zu-Yin Yu ^c, Jian-Nan Feng ^b, Bei-Fen Shen ^b, Yan Li ^{b,*}, He Xiao ^{b,*}

^a Department of Biomedicine, Institute of Frontier Medical Sciences, Jilin University, 130021, Changchun, China

^b Department of Molecular Immunology, Institute of Basic Medical Sciences, 100850, Beijing, China

^c Department of Pathophysiology, Institute of Radiation Medicine, 100850, Beijing, China

ARTICLE INFO

Article history: Received 1 July 2010 Received in revised form 30 August 2010 Accepted 1 September 2010

Keywords: cGVHD Lupus nephritis Anti-CD3 mAb Teff/Treg balance Up-regulation Foxp3

ABSTRACT

Teff/Treg imbalance orchestrated the onset and the progression of the lupus nephritis in a DBA/2→B6D2F1 murine model with cGVHD. In this paper, we first used 145-2C11 Ab to treat these human SLE-like diseased animals. The results showed that short-term low-dose anti-CD3 antibody treatment induced a significant remission of established proteinuria, production of autoantibodies, immune complex deposition and renal parenchyma lesions in lupus nephritic mice. Of note, we found a robust up-regulation of Foxp3 mRNA expression in the target tissue: kidney from mice with anti-CD3 antibody treatment compared to those with control IgG treatment. Likewise, an increased renal mRNA abundance for IL-10 was also observed in anti-CD3 antibody treated mice. In contrast, genes associated with inflammation and fibrosis as well as cytokines related to effector T cell responses were down-regulated by anti-CD3 mAb treatment. These findings suggested that short-term low-dose anti-CD3 antibody treatment might induced an IL-10-secreting Foxp3⁺ regulatory T cells in this cGVHD target tissue: kidney, that suppressed the activation of effector T cells (Th1, Th2 and Th17), thus ameliorating the severity of the lupus nephritis in mice.

© 2010 Elsevier B.V. All rights reserved.

1. Introduction

System lupus erythematosus (SLE) is an autoimmune disease caused by loss of tolerance, production of autoantibodies, and deposition of complement-fixing immune complexes (ICs) in tissues leading to multisystem injury, including nephritis, arthritis, serositis, dermatitis, and blood dyscrasias [1]. Lupus nephritis is a key manifestation, which is considered to be the proximate cause of death in SLE patients due to late-phase renal failure [2,3].

Injection of DBA/2 lymphocytes to C57BL/6-DBA/2 F1 hybrids leads to a chronic GVHD characterized by a persistent lymphoid hyperplasia producing hypergammaglobulinemia and a systemic lupus erythematosus (SLE)-like disease [4–6] with splenomegaly, B cell expansion, autoantibodies, and severe immune complexmediated glomerulonephritis. The hamster 145-2C11 Ab (anti-CD3) binds and cross-links the CD3 ϵ chains of the mouse TCR [7] resulting in costimulation-dependent

Table 1

Primer sequences	used	for	qPCR
------------------	------	-----	------

Genes	Primer 1 (Forward, $5' \rightarrow 3'$)	Primer 2 (Reverse, $5' \rightarrow 3'$)
RANTES	atgaagatctctgcagctgccctc	tgctggtgtagaaatactccttgac
IP-10	atccctctcgcaaggacggtccgctg	tcttagattccggattcagacatc
BLC	atgaggctcagcacagcaacgctgcttc	tccgatctatgatgtttagaccgacaacag
Ltn	atgagacttctcctcctgactttc	ctcccagatgatataggtcttg
MCP-1	atgcaggtccctgtcatgcttctg	ggtgatcctcttgtagctctccag
MIG	atgaagtccgctgttcttttcctc	gaggtctttgagggatttgtag
IL-6	ttccctacttcacaagtccggagaggag	ctgcaagtgcatcatcgttgttc
TNF-α	attcgagtgacaagcctgtagcccac	ctgggagtagacaaggtacaacccat
IL-1 β [20]	gcccatcctctgtgactcat	aggccacaggtattttgtcg
TGF-β1	ataccaactattgcttcagctccacag	gtactgtgtgtccaggctccaaatat
CTGF	gcctggtgctggacggctgcggctgct	catctttggcagtgcacactccgatct
α-SMA	agcgtgagattgtccgtgacatcaaggag	gttcgtttccaatggtgatcacctgcccg
Collagen IV α1	agctttccataatggcacatacca	gcttcatcctgtcaccccagatgtg
Collagen I α1	aggcaacagtcgcttcacctacagc	caatgtctagtccgaattcctggtct
IFN-γ	gcacagtcattgaaagcctagaaagtc	ggtagaaagagataatctggctctg
IL-4	atggatgtgccaaacgtcctcacag	gagtctctgcagctccatgagaacac
IL-10	tgccttcagccaggtgaagactttc	cttgatttctgggccatgcttctctg
IL-23	aggatccgccaaggtctggctt	tgatcctctggctggaggagttgg
IL-17	ctacctcaaccgttccac	tctcaggctccctcttc
IL-17 [21]	gggagagcttcatctgt	gaccctgaaagtgaaggg
Foxp3	atgcccaaccctaggccagccaag	tgggccccacttcgcaggtcccgac
GAPDH	tgaaggtcggtgtgaacggatttg	gttgaatttgccgtgagtggagtc

^{*} Corresponding authors. Sun is to be contacted at Fujin Road 1266, Department of Biomedicine, Institute of Frontier Sciences, Jilin University, 130021, Changchun, China. Tel.: +86 431 85619233. Li and Xiao, Taiping Road 27, Department of Molecular Immunology, Institute of Basic Medical Sciences, 100850, Beijing, China. Tel.: +86 10 66931326; fax: +86 10 68159436.

E-mail addresses: Sundjjl@yahoo.com.cn (D.-J. Sun), liyan62033@yahoo.com.cn (Y. Li), yinher2001@yahoo.com (H. Xiao).

^{0966-3274/\$ –} see front matter $\ensuremath{\mathbb{C}}$ 2010 Elsevier B.V. All rights reserved. doi:10.1016/j.trim.2010.09.002

Fig. 1. Anti-CD3 mAb treatment induced remission of established proteinuria in nephritic mice.

CD4⁺ T cell activation in vitro. Because in vivo administration anti-CD3 Ab induces TCR down-regulation, T cell tolerance, and CD4⁺ T cell depletion [8], previous studies have used this Ab as an immunosuppressive agent to treat various autoimmune disorders [9–15] and transplant rejection [16–19]. Treatment of nonobese diabetic (NOD) or EAE mice with either mitogenic conventional monoclonal antibodies (5 µg/day i.v. for 5 consecutive days) or nonmitogenic antibody (50 µg/day i.v. for 5 consecutive days) to CD3 results in disease remission with long-term immune tolerance.

In this paper, we tested the effect of 145-2C11 Ab on this established human SLE-like model. The results showed that short-term low-dose anti-CD3 antibody treatment induced a significant remission of established proteinuria, production of autoantibodies, immune complex deposition and renal parenchyma lesions in lupus nephritic mice.

Fig. 2. Anti-CD3 mAb treatment reduced lymphocytes activation. A: The percentage of CD4⁺CD44^{high}CD62^{low} population in whole blood from CD3 mAb-treated group mice (13.91% ± 0.022) were largely reduced in contrast to control IgG-treated group mice (30.99% ± 0.097); B: CD3 mAb treatment markedly inhibited the activation of splenic lymphocytes.

Download English Version:

https://daneshyari.com/en/article/3392211

Download Persian Version:

https://daneshyari.com/article/3392211

Daneshyari.com