
Mathematical modelling and prediction in infectious disease epidemiology

A. Huppert1,* and G. Katriel2,*

1) Biostatistics Unit, The Gertner Institute, Chaim Sheba Medical Centre, Tel Hashomer and 2) Department of Mathematics, ORT Braude College, Karmiel,

Israel

Abstract

We discuss to what extent disease transmission models provide reliable predictions. The concept of prediction is delineated as it is

understood by modellers, and illustrated by some classic and recent examples. A precondition for a model to provide valid predictions is

that the assumptions underlying it correspond to the reality, but such correspondence is always limited—all models are simplifications of

reality. A central tenet of the modelling enterprise is what we may call the ‘robustness thesis’: a model whose assumptions approximately

correspond to reality will make predictions that are approximately valid. To examine which of the predictions made by a model are

trustworthy, it is essential to examine the outcomes of different models. Thus, if a highly simplified model makes a prediction, and if the

same or a very similar prediction is made by a more elaborate model that includes some mechanisms or details that the first model did not,

then we gain some confidence that the prediction is robust. An important benefit derived from mathematical modelling activity is that it

demands transparency and accuracy regarding our assumptions, thus enabling us to test our understanding of the disease epidemiology by

comparing model results and observed patterns. Models can also assist in decision-making by making projections regarding important issues

such as intervention-induced changes in the spread of disease.
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Introduction

Can mathematical models in the field of infectious diseases

provide predictions? We argue that they can and do, provided

that the scope of the notion of prediction is suitably qualified.

Below, we will delineate the concept of prediction as we

believe it is understood by mathematical modellers, illustrating

it by some classic and recent examples.

A mathematical model is an imaginary microworld consist-

ing of entities behaving according to precisely specified rules.

Mathematics provides us with a language for formulating these

rules of behaviour in a concise and unambiguous way, thus

forcing and helping us to clearly state our assumptions. Once a

mathematical model is constructed, mathematical analysis,

often combined with computer simulations, helps us to

investigate the global behaviour of the model, drawing out

the consequences of the assumptions that we have made.

Thus, within the context of the model, we can make

predictions of the future of our imaginary world and also

study how these predictions change as the rules governing the

entities described by the model are varied.

Thus, a mathematical model for the spread of an infectious

disease in a population of hosts describes the transmission of

the pathogen among hosts, depending on patterns of contacts

among infectious and susceptible individuals, the latency period
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from being infected to becoming infectious, the duration of

infectiousness, the extent of immunity acquired following

infection, and so on. Once all of these factors are formulated in

a model, we can make predictions about the number of

individuals who are expected to be infected during an

epidemic, the duration of the epidemic, the peak incidence,

and, indeed, we can predict the entire epidemic curve,

providing us with the expected number of cases at each point

in time.

Clearly, for the precise predictions made within the model’s

virtual world to be relevant to reality, the model itself needs to

correspond to or represent what is occurring in the real world

—one cannot expect to obtain good predictions from false

assumptions. However, modellers are well aware of the fact

that all models are, at best, partial descriptions of the

mechanisms operating in reality, containing various layers of

simplification, idealization, approximation, and abstraction.

Indeed, much of the discussion and debate among modellers

involves the nature of these simplifications and their appro-

priateness. Thus, a central tenet of the modelling enterprise is

what we may call the ‘robustness thesis’: a model whose

assumptions approximately correspond to reality will make

predictions that are approximately valid. If one accepts this

general (and admittedly vague) idea, then even highly simplified

models—which clearly overlook or even contradict some

aspects of reality—can provide some valuable predictions, as

long as their assumptions mirror some central aspects of

reality. Deciding which of the predictions of a simple model are

robust, in the sense that they can be applied with confidence

to reality, can be a difficult question. An important procedure

that modellers use to test the robustness of predictions made

by a mathematical model is to compare different models [1–3].

Thus, if a highly simplified model makes a prediction, and if the

same or a very similar prediction is made by a somewhat more

elaborate model that includes some mechanisms or details that

the first model did not, then we gain some confidence that the

prediction is robust. If, on the other hand, a certain prediction

is highly dependent on the details of a particular model, then,

as we never expect the model to be more than an approximate

description of reality, we cannot have much faith in that

particular prediction.

The SIR model

Let us illustrate some of the above considerations by reference

to the most famous and paradigmatic model in mathematical

epidemiology, the simple SIR model of Kermack and McKen-

drik [4]. In this model, a population is divided into susceptible,

infective and recovered individuals, with the functions S(t), I(t)

and R(t) denoting their respective fractions in the populations

at time t (measured, for example, in days). The evolution of

these quantities is described by the differential equations:

dS

dt
¼ �bSI

dI

dt
¼ bSI� cI

dR

dt
¼ cI

where the derivatives dS/dt, dI/dt and dR/dt measure the rates

of change of the quantities S(t), I(t), and R(t). The transmission

parameter b is the average number of individuals that one

infected individual will infect per time unit, assuming that all

contacts that this individual makes are with susceptible

individuals. Thus, a more highly infectious disease has a higher

b. The number c is the rate of recovery, so that 1/c is the

average time period during which an infected individual

remains infectious. The product bS(t) I(t) is the total infection

rate, the fraction of the population that will be infected per

unit time at time t. To understand this, note that, if a fraction I

(t) of the population is currently infected, then they would

infect a fraction bI(t) of the population per unit time if all of

their contacts were with susceptible individuals, but as only a

fraction S(t) of the population is currently susceptible, they will

only infect bI(t) S(t) per unit time.

The ratio b/c is also known as the basic reproductive

number R0, which is an important index for quantifying the

transmission of pathogens. R0 is defined as the average number

of people infected by an infected individual over the disease

infectivity period, in a totally susceptible population.

This simple model, which is the basis for many elaborations,

turns out to provide some quite striking predictions. By

entering the above differential equations into any software for

the numerical solution of differential equations, and choosing

some values for b and c together with the initial values S(0), I

(0), and R(0), it is possible to generate an epidemic curve

corresponding to this model, that is a prediction for the

fraction of the population that will be infected on each day of

the epidemic. Moreover, analytical tools allow us to draw

some general conclusions about the model’s solutions. The

most important conclusions are as follows:

1. The epidemic threshold: if the inequality S(0) R0 > 1 holds,

then the number of infected individuals will rapidly decrease;

that is, no epidemic will occur. Note that, if S(0) R0 > 1,

then an epidemic will occur, no matter how small the initial

number of infected individuals.

2. The size of the epidemic, when it occurs, will not depend

on the initial number of infectives, but it will depend on

the initial fraction of susceptibles, S(0), and on R0. An
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