
EISEVIED

Contents lists available at ScienceDirect

Journal of Virological Methods

journal homepage: www.elsevier.com/locate/jviromet

Short communication

Optimization of allele-specific PCR using patient-specific HIV consensus sequences for primer design

Valerie F. Boltz^a, Frank Maldarelli^a, Neil Martinson^{b,d}, Lynn Morris^c, James A. McIntyre^b, Glenda Gray^b, Mark J. Hopley^e, Toshio Kimura^e, Douglas L. Mayers^{f,g}, Patrick Robinson^f, John W. Mellors^h, John M. Coffin^{a,i}, Sarah E. Palmer^{a,j,*}

- ^a HIV Drug Resistance Program, NCI, NIH, Frederick, MD, United States
- ^b Perinatal HIV Research Unit, University of the Witwatersrand, Johannesburg, South Africa
- ^c National Institute for Communicable Diseases, Johannesburg, South Africa
- d Johns Hopkins University School of Medicine, Baltimore, MD, United States
- ^e Boehringer Ingelheim, GmBH, Ingelheim, Germany
- f Boehringer Ingelheim Pharmaceuticals, Ridgefield, CT, United States
- g Idenix Pharmaceuticals, Cambridge, MA, United States
- ^h University of Pittsburgh, Pittsburgh, PA, United States
- ¹ Department of Molecular Biology and Microbiology, Tufts University, Boston, MA, United States
- ^j Virology Department, Swedish Institute of Infectious Disease Control, Karolinska Institutet, Sweden

ABSTRACT

Article history:

Received 2 June 2009
Received in revised form
17 November 2009
Accepted 23 November 2009
Available online 3 December 2009
Available online 3 December 2009
Article history:
Allele-specific PCR based on subtype consensus sequences is a powerful technique for detecting low frequency drug resistant mutants in HIV-1 infected patients. However, this approach can be limited by genetic variation in the region complementary to the primers, leading to variability in allele detection. The goals of this study were to quantify this effect and then to improve assay performance.
© 2009 Elsevier B.V. All rights reserved.

Keywords: HIV-1 Allele-specific PCR Low frequency variants Subtype consensus sequence Patient-specific HIV-1 consensus sequence

Infection with human immunodeficiency virus type 1 (HIV-1) remains a major global health challenge. Antiretroviral therapy (ART) has improved and lengthened the lives of those infected with HIV. Nevertheless, antiviral drug resistance continues to reduce the effectiveness of ART (Coffin, 1995; Martinez-Picado and Martinez, 2008). Nonnucleoside reverse transcriptase inhibitors (NNRTIs) are routinely used for the treatment and prevention of HIV-1 infection. NNRTIs target reverse transcriptase (RT), an enzyme essential for HIV-1 replication (De Clercq, 1994; Deeks, 2001). The single point mutations AAA to AAC or AAT in HIV-1 RT at codon 103 result in a lysine to asparagine substitution (K103N) which causes resistance to efavirenz and nevirapine (Harrigan et al., 2005; Wainberg, 2003). Detection of HIV-1 variants carrying these mutations is impor-

E-mail address: sarah.palmer@smi.se (S.E. Palmer).

tant for understanding the emergence of drug resistance and for designing optimal ART strategies. To this end, a sensitive real time allele-specific PCR (ASP) assay for quantifying low frequency HIV-1 variants containing NNRTI-resistant variants in patients infected with HIV-1 has been reported (Palmer et al., 2006a,b). Using this assay, detection of drug resistant variants over a broad range of frequencies (0.1–99.5%) is achievable providing insight into the emergence and persistence of drug resistance after the discontinuation of therapy (Palmer et al., 2006a) and after single-dose nevirapine treatment to prevent mother to child transmission (Palmer et al., 2006b). Other researchers have reported the detection of minor resistant HIV-1 variants using similar techniques (Halvas et al., 2006; Johnson et al., 2005; Loubser et al., 2006; Metzner et al., 2003). As for all PCR-based assays, ASP can be limited by genetic variation in the region complementary to the primers, leading to variability in detection efficiency. The accuracy of ASP may also be influenced by the technique employed and the method of data analysis. A recent report described improved ASP with the use of polymorphism-specific primers (Rowley et al., 2008). It is

^{*} Corresponding author at: Virology Department, Swedish Institute of Infectious Disease and Control Karolinska Institutet, Nobels Väg 18, 171 82 Solna, Sweden. Tel·+46 8 457 2508

Table 1Relationship between sequence polymorphism around codon 103 and amplification efficiency.

		A.	Subty	pe C C	onsei	isus a	nd Pr	imer	Seque	nces	
Consensus Subtype C Nonspecific Standard/Primer Sequence											
nm 1		00 104	105	100	100	100	100	110		110	110
RT codon		03 104									GAT 3'
Primer	3′	AA AAA									CTA 5'
FIIMEL	3		AGI	CAC	161	CAI	GAI	CIA	CAC	CCC	CIA J
Consensus Subtype C 103N (aac) Specific Standard/Primer Sequence											
RT codon	1	03 104	105	106	107	108	109	110	111	112	
KI COGOII		AC AAA									
Primer ^a		G GTT									
Consensus Subtype C 103N (aat) Specific Standard/Primer Sequence											
RT codon	1	03 104	105	106	107	108	100	110	111	112	
KI COGOII		AT AAA									
Primer ^a		A CTT									
	J			0110	-0-	0111	0111	0111	00		_
Consensus S	ubtype C	WT (aaa) Spe	cific S	tanda	rd/Pr	imer	Seque	nce		
RT codon 103 104 105 106 107 108 109 110 111 112											
RT codon											
a		AA AAA									
Primer	3′	T CTT	AGT	CAC	TGT	CAT	GAT	CTA	CAC	CC	5
	B. Sequences Observed in Patient Samples										
Sequence	Number	T .	J. Seq	uence	005	civea		tient t	, ampi		PCR efficiencies prior
Sequence	of		Mir	nus sti	and s	eauer	nce 5'	to 3'b			primer correction
	patients					- 1					(sum of species detecte
		codon 1	12 111	110 1	09 108	107	106 1	05 104	103		at codon 103)
Consensus ^c	6	C	CCAC	ATCT	AGTA	CTGT	CACT	GATT'	ГT		50 - 100%
I	20	С	CCAC	ATCC	AGTA	CTAT	CACT	GATT'	TТ		25 - 100%
II	4	С	CCAC	ATCC	AGCA	CTAT	CACT	GATT'	ТТ		25 - 72%
Ш	2	С	CCAC	ATCC	ATA	CTGT	CACT	GATT'	ГT		25 - 66%
IV	2	С	CCAC	ATCC	AGTA	CTGT	TACT	GATT'	TT		26 - 43%
V	1	С	CTAC	ATCC	AGTA	CTGT	CACT	GATT'	TT		51%
VI	1	С	CCAC	ATCT	AGCA	CTGT	CACT	GATT'	ГT		70%
VII	1	С	CCAC	ATCT	ATA	CTGT	CACT	GATT'	тт		36 %
1	1	С	CCAC	ATCC	AGCA	CTGT	CACT	GACT'	TT		2%
2	1	С	CCAC	ATCT	AGTA	CTGT	CACT	GACC'	ГT		0.5%
3	1		CCAC								4%
4	1	C	CCAC	ATCC	AGCA	CTGT	TACT	GATT'	TT		3%
			1 11. 1	c 11							

^aPenultimate 3' mismatch shown in blue is built in for discrimination between alleles.

concluded that ASP is a powerful tool only when allele-specific primers perfectly match the patient HIV-1 sequence, requiring a bulk genotypic analysis of the region of interest for each patient plasma sample. However, there is a method to correct for the effects of genetic variation on the quantitation of viral variants at a specific allele and to achieve acceptable assay performance without requiring genotypic analysis of every patient sample. Details of the technique and data analysis that enhance the detection and improve the accuracy of allele quantitation are described.

Viral RNA is extracted from patient samples infected with HIV-1 and a first round amplification is performed using quantitative real time PCR as published (Palmer et al., 2006a). Quantitation of the number of cDNA molecules synthesized and amplified in the first round RT-PCR is important to determine the level of sensitivity of subsequent ASP, without which the assay sensitivity cannot be determined since variation in virus concentration, plasma components, and primer matches to target sequences can

lead to variability in efficiency of RNA recovery, cDNA synthesis, and amplification.

Allele-specific primers that amplify selectively subtype-specific HIV-1 mutant or wildtype (WT) alleles at codon 103 are then used in ASP to quantify the proportion of each allele in cDNA derived from patient plasma RNA (Table 1A). Parallel reactions are performed using two primer sets: selective primers to quantify mutant or WT frequencies, and a nonselective primer to quantify total DNA.

The selective primers match a mutant (C or T) or wildtype base (A or G) at the 3′ end of codon 103, but mismatch all templates at the penultimate position, a modification that has little impact on amplification of sequences complimentary to the 3′ end of the primer but reduces markedly amplification (≥1000-fold) when the 3′ end of the primer is also mismatched (Cha et al., 1992; Hance et al., 2001; Palmer et al., 2006a). The specific nucleotide used for the intentional mismatch was given a great deal of attention and the best mismatched pair was determined empirically. For the allele-

^bOnly the wildtype allele is shown. Patient polymorphisms are denoted in red.

^cThis sequence was common in the LANL database, sequence I was most common in the patient group.

Download English Version:

https://daneshyari.com/en/article/3407307

Download Persian Version:

https://daneshyari.com/article/3407307

<u>Daneshyari.com</u>