MALDI-TOF MS contribution to diagnosis of melioidosis in a nonendemic country in three French travellers

V. Walewski^{1,4}, F. Méchaï², T. Billard-Pomares^{1,4}, W. Juguet³, F. Jauréguy^{1,4}, B. Picard^{1,4}, Y. Tandjaoui-Lambiotte³,

E. Carbonnelle^{1,4} and O. Bouchaud²

1) Microbiology Department, 2) Infectious Diseases Unit, 3) Medico-Surgical Intensive Care Unit, Hôpital Avicenne, APHP, Bobigny and 4) IAME, UMR 1137, Université Paris 13, Sorbonne Paris Cité, Paris, France

Abstract

Melioidosis is an endemic disease in Southeast Asia and northern Australia. An increasing number of cases are being reported in nonendemic countries, making the diagnosis less obvious. We discuss the identification of *Burkholderia pseudomallei* using matrix-assisted desorption ionization-time of flight mass spectrometry on the occasion of recent cases of imported melioidosis in French travellers.

© 2016 The Authors. Published by Elsevier Ltd on behalf of European Society of Clinical Microbiology and Infectious Diseases. This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).

Keywords: Burkholderia pseudomallei, diagnosis, imported infectious disease, MALDI-TOF MS, melioidosis
Original Submission: 17 February 2016; Revised Submission: 30 March 2016; Accepted: 5 April 2016
Article published online: 12 April 2016

Corresponding author: V. Walewski, Service de Bactériologie, Assistance Publique-Hôpitaux de Paris, Hôpital Avicenne, 125, Rue de Stalingrad, 93000, Bobigny, France **E-mail: violaine.walewski@aphp.fr**

Introduction

Burkholderia pseudomallei is the causative agent of melioidosis. It is common in Southeast Asia and northern Australia. In Thailand, 20% of all community-acquired cases of septicaemia are caused by B. pseudomallei, with 40% mortality. A striking rise in cases of melioidosis was observed after the December 2004 tsunami, and the disease was also more common after floods in Malaysia in 2015 (http://www.promedmail.org/direct.php?id=3218685). An augmentation of imported cases in Western countries may be strongly correlated with increased international travel (http://mkt.unwto.org/barometer) [1]. Early diagnosis of melioidosis is important considering the high mortality observed without adequate antibiotic therapy [2]. Because empirical antibiotic regimens for community-acquired pneumonia in nonendemic countries may not provide adequate treatment for melioidosis [3,4], effective tools are needed to rapidly diagnose melioidosis.

Patients and Methods

Melioidosis was diagnosed in three French travellers in December 2013 as well as in April and August 2015 at Hôpital Avicenne, Bobigny, France. Patient characteristics are listed in Table I. Their management and outcome were strongly related to the efficiency of the diagnosis.

The first patient was admitted to the emergency department with a 3-week history of community-acquired pneumonia with treatment failure. Two days after admission, marked acute respiratory distress and multiple organ failure occurred, leading to the patient's transfer to the intensive care unit for respiratory assistance and extracorporeal circulation. Concomitant with the aggravation one blood culture drawn at admission was positive Gram-negative bacilli on Gram stain. Subculture yielded Gram-negative, oxidase-positive bacilli which could not be identified using a biochemical test strip (API20E; bioMérieux, Marcy l'Étoile, France). Using molecular biology (partial sequencing of the *I 6S rRNA* gene), *B. pseudomallei* was identified within 2 days. Susceptibility testing indicated a regular antimicrobial resistance pattern (Table 2).

Patient 2 was admitted shortly after his return from Borneo. At this stage, he received no antibiotics. On day 3 of hospitalization, an aerobic blood culture drawn at admission yielded Gram-negative bacilli. Rapid identification using matrix-assisted desorption ionization-time of flight mass spectrometry (MALDI-TOF MS; Microflex LT; Bruker Daltonics, Leipzig, Germany) was performed directly on the pellet of the blood culture [5]. Within less than 1 hour, the analysis yielded *Burkholderia thailandensis* with a log score value of 1.83 (using the standard Bruker v4.0 database). Querying the security-relevant (SR) library, which includes bioterrorism agents (Bruker), revealed *B. pseudomallei*, with a log score value of >2.0. The identification was confirmed 5 days later by molecular biology (targeting genes BpSCU2 and orf11 [6]). Biochemical

New Microbe and New Infect 2016; 12: 31–34 © 2016 The Authors. Published by Elsevier Ltd on behalf of European Society of Clinical Microbiology and Infectious Diseases This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/)

TABLE I.	atient characteristics
	Gender

Patient No.	Gender (age, years)	Clinical presentation (date)	Visited country	Risk factor	Medical imaging	Laboratory results biology	Treatment (duration)	Outcome
1	M (37)	Fever and mild cough, rapid evolution to acute respiratory distress, multiple organ failure (December 2013)	Thailand (Kho Phangan)	None; tattoo?	Chest x-ray revealed cavity-like lesion in upper lobe of right lung compatible with tuberculosis	 Leukocytes: 22.4 × 10⁹ L (81% neutrophils) HBV, HCV, HIV serologies: negative Malaria test: negative PCT: 0.98 µg/L 	 Amoxicillin (7 days) Amoxicillin-clavulanic acid (7 extra days) Piperacillin-tazobactam + amikacin Intravenous ceftazidime + cotrimoxazole (14 days) Maintenance oral cotrimoxazole (6 months) 	After several weeks, acute renal failure persisted along with reduced respiratory capacity. To date, no relapse observed.
2	M (36)	Fever, chills, alteration of general state (April 2015)	Malaysia (Borneo)	None; flood?	Computed tomography chest scan revealed upper left lobe condensation	 Leukocytes: 6.8 × 10⁹ L (82% neutrophils) HBV, HCV, HIV serologies: negative Malaria test: negative PCT: 6.8 µg/L 	 Intravenous ceftazidime and oral cotrimoxazole (10 days) Maintenance oral cotrimoxazole (3 months) 	Favorable clinical outcome was observed rapidly despite diagnosis of secondary prostatic abscess. To date, no relapse observed.
3	F (58)	Fever, chills, acute respiratory distress, diarrhoea, vomiting (August 2015)	Cambodia	Diabetes mellitus	Chest x-ray revealed alveolar condensation lesions in lower lobe of her left lung	 Leukocytes: 19.6 G/L (88% neutrophils) HIV serology: negative PCT: 28.9 µg/L 	 Intravenous ceftriaxone for 24 hours; after bacterial identification, intravenous ceftazidime and oral cotrimoxazole (21 days) Maintenance oral amoxicillin-clavulanic acid (3 months) 	Clinical course was rapidly favorable. Sepsis and urinary tract infection were observed 5 months after.

32

Download English Version:

https://daneshyari.com/en/article/3417465

Download Persian Version:

https://daneshyari.com/article/3417465

Daneshyari.com