Wilderness in the 'city' revisited: different *urbes* shape transmission of *Echinococcus multilocularis* by altering predator and prey communities

Stefano Liccioli^{1,2,*}, Patrick Giraudoux³, Peter Deplazes⁴, and Alessandro Massolo^{1,5,*}

¹ Department of Ecosystem and Public Health, Faculty of Veterinary Medicine, University of Calgary, 3280 Hospital Drive NW, Calgary, AB T2N 4Z6, Canada

² Department of Biological Sciences, University of Calgary, 2500 University Drive NW, Calgary, AB T2N 1N4, Canada

³ Chrono-environment Lab, UMR6249 and Institut Universitaire de France University of Franche-Comté and CNRS, Besançon, France

⁴ Institute of Parasitology, University of Zurich, Winterthurerstrasse 266a, CH-8057 Zurich, Switzerland

⁵ O'Brien Institute for Public Health, Cumming School of Medicine, University of Calgary, 3280 Hospital Drive NW, Calgary, AB T2N 4Z6, Canada

The urbanization of *Echinococcus multilocularis*, the agent of alveolar echinococcosis (AE), is a public health concern worldwide. Here we propose to consider 'urban' habitats under a broad ecological perspective and discuss the effects of human settlements (*urbes*) on host communities and the process of parasite urbanization. We argue that interactions between landscape features (i.e., landscape composition and configuration) and host communities can shape the heterogeneity of transmission gradients observed within and across different types of human settlement. Due to unique ecological characteristics and public health management priorities, we envisage urban landscapes as a model system to further increase our understanding of host-parasite interactions shaping the circulation of *E. multilocularis*.

The urbanization and emergence of E. multilocularis

Urbanization has broad effects on ecosystem biodiversity [1], ecological mechanisms [2,3], and disease dynamics [4]. Exploring its effects on host-pathogen interactions becomes particularly interesting for trophically transmitted parasites, given the complex life cycles often involving intermediate and definitive host species with very different ecologies [5].

The cestode *E. multilocularis* is the causative agent of AE in humans, which is among the most serious emerging parasitic zoonoses for the Northern Hemisphere (case fatality rate >90% when untreated [6]). According to a 2014 report of the World Health Organization (WHO) and the United Nations' Food and Agriculture Organization

Keywords: Echinococcus multilocularis; heterogeneity; host community;

parasite-host interactions; urbanization.

1471-4922/

© 2015 Elsevier Ltd. All rights reserved. http://dx.doi.org/10.1016/j.pt.2015.04.007

(FAO), *E. multilocularis* is ranked as the food-borne parasite with the third greatest global impact [7]. Several interacting factors are possibly responsible for the parasite's global emergence [8]: (i) increases in definitive host populations [9,10]; (ii) landscape changes outside cities (e.g., deforestation, grassland extension) that promote high densities of intermediate host populations in endemic areas [11–13]; (iii) the inclusion of domestic animals into the parasite cycle and their role in parasite transmission to humans [14–16]; and (iv) the sprawl of cities into carnivores' natural habitats [17], along with growing trends in planning green spaces within urban landscapes [18].

The circulation of *E. multilocularis* in urban settings not only changed our perception of the risk of zoonotic transmission [10] but also generated new questions on the evolution of a complex ecological system. Yet, ecological mechanisms underlying the urbanization of parasites remain poorly understood. Seminal contributions to the understanding of the urban transmission of *E. multilocularis* come from research done in European cities [10,19,20], but there is a need to extend the concept of 'urban' to include other landscapes and types of human settlement (Table 1) where ecological processes [21] and control strategies [16,22] may be significantly different.

As a decade has passed since Deplazes *et al.* [10] published the first and only review focusing on urban *E. multilocularis* transmission, we here aim to: (i) revisit and broaden the concept of urban landscapes (including small human settlements in rural landscapes) in relation to the urbanization of *E. multilocularis*, in light of the evidence obtained in the past 10 years of ecological studies; and (ii) describe how the urbanization process affects key changes in intermediate and definitive host communities, their interactions, and, consequently, *E. multilocularis* transmission within and in proximity to urban settings.

Corresponding author: Massolo, A. (amassolo@ucalgary.ca).

^{*}These authors contributed equally to this work.

Table 1. Field-based research on Echinococcus multilocularis in urban habitats, excluding review papers

			Definitive host ^c			Intermediate host ⁵	
Urban setting ^a	Location ^b	Study object	Species	% Prevalence in intestines	% Prevalence in feces	Species (% prevalence, <i>n</i>)	Refs
High-density city	Zurich (CHE)	Prevalence	Vulpes vulpes	36		<i>Arvicola sherman</i> (14%, 135)	[46]
High-density city	Zurich (CHE)	Prevalence	V. vulpes		25.8 ¹	A. sherman (9.1%, 889)	[50]
High-density city	Zurich (CHE)	Prevalence				Myodes glareolus (2.4%, 83)	[50]
High-density city	Zurich (CHE)	Control	V. vulpes		n/a	A. sherman (6.8%, 1229) ³	[69]
High-density city	Geneva (CHE)	Prevalence	V. vulpes	31			[70]
High-density city	Zurich (CHE)	Ecology	V. vulpes	16.5		A. sherman (n/a)	[19]
High-density city	Geneva (CHE)	Prevalence	V. vulpes	48.8			[29]
High-density city	Nancy (FRA)	Prevalence	V. vulpes	4			[20]
High-density city	Nancy (FRA)	Epidemiology	V. vulpes				[71]
Low-medium-density city	Sapporo city (JPN)	Prevalence	V. vulpes		21.3 ¹	<i>Myodes rufocanus</i> (0%, 3)	[28]
Low-medium-density city	Sapporo city (JPN)	Prevalence	V. vulpes		16–49 ^{1,2}		[72]
Low-medium-density city	Calgary (CAN)	Prevalence	Canis latrans	25.6	≤6.1 ²		[73]
Low-medium-density city	Calgary, Edmonton (CAN)	Prevalence	C. latrans	25.3			[17]
Low-medium-density city	Calgary (CAN)	Ecology	C. latrans		21.4 ²	Peromyscus maniculatus (0.66%, 310)	[21]
Low-medium-density city	Calgary (CAN)	Ecology				Microtus pennsylvanicus (0.75%, 267)	[21]
Low-medium-density city	Calgary (CAN)	Ecology				Myodes gapperi (1.41%, 71)	[21]
Low-medium-density city	Calgary (CAN)	Ecology/ epidemiology	C. latrans	25.0 ⁴			[74]
Low-medium-density city	Calgary (CAN)	Ecology/ epidemiology					[75]
Rural town	Koshimizu (JPN)	Control	V. vulpes		38.7-13.3 ²		[76]
Rural town	Abashiri, Nemuro, Kushiro (JPN)	Prevalence	V. vulpes	4		<i>M. rufocanus</i> (n/a)	[26]
Rural town	Nemuro City (JPN)	Control	V. vulpes	49.4 ³			[22]
Rural town	Otaru, Koshimizu, Nemuro (JPN)	Control	V. vulpes				[77]
Rural town	Otaru, Koshimizu, Nemuro (JPN)	Control	Canis lupus familiaris	0.4 ^{1,2}			
Rural town	Otaru city (JPN)	Prevalence	V. vulpes	56.7			[59]
Rural town	Otaru city (JPN)	Prevalence	Nyctereutes procyonoides	23.1			[59]
Rural town	Chenaran county (IRN)	Prevalence	V. vulpes	10–22.9		Ochtona rufescens (75%, 4)	[80]
Rural town	Chenaran county (IRN)	Prevalence	Canis aureus	16		Microtus transcaspicus (29.6%, 54)	[27,78–81]
Rural village	Oberammergau and Starnberg (GER)	Prevalence/ ecology	V. vulpes	41.9–45.5	26.1 ²		[25]
Rural village	Zang county (CHN)	Epidemiology	C. I. familiaris	10			[82]
Rural village	Tuanji, Shiqu county (CHN)	Ecology				Microtus limnophilus (14.7%, 34)	[83]
Rural village	Shiqu county (CHN)	Ecology	C. I. familiaris	13–33		Cricetulus kamensis (5.3%, 19)	[41]
Rural village	Savoonga, St. Lawrence Island (USA)	Control				Microtus oeconomus (22–35%, n/a) ³	[40]
Rural village	Shiqu county (CHN)	Ecology	C. I. familiaris		23 ²		[43]

Opinion

Download English Version:

https://daneshyari.com/en/article/3422950

Download Persian Version:

https://daneshyari.com/article/3422950

Daneshyari.com