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Anthelmintic drug efficacy (ADE) is generally estimated
as a population average effect, despite drug responses
varying among individuals according to a variety of
measurable and non-measurable factors. Model-based
and/or individual-level analyses are scarce and often
methodologically frail. We propose that wider applica-
tion of marginal and mixed models would offer benefits
to the evaluation of ADE. We demonstrate, with a
worked example, how model-based analyses: (i) capture
the effects of correlation among hierarchically structured
longitudinal data on estimates of ADE; (ii) permit robust
inference on the association of measurable factors with
ADE; and (iii) enable estimation of variation among
individual-level estimates of ADE. The application of
modelling approaches is discussed in the context of
mass drug administration-based control of human hel-
minthiases.

The imperative to measure anthelmintic drug efficacy
The effectiveness of treating and controlling human and
livestock helminthiases critically depends on the efficacy of
anthelmintic drugs. In livestock, the utility of anthelmin-
tics has been severely diminished by the rapid evolution
and spread of anthelmintic resistance [1–3]. Despite the
lessons learnt from 50 years of somewhat indiscriminate
livestock treatment strategies [4], there is due concern that
resistance, or at least sub-optimal drug efficacy, could
derail the burgeoning global onslaught against helminth
infections of humans. The current strategic intervention is
based principally on anthelmintic mass drug administra-
tion (MDA) [5–8], and is endorsed by the World Health
Organization (WHO) in their roadmap on the control and
elimination of neglected tropical diseases (NTDs) by
2015 and 2020 [9]. Application of appropriate and powerful
statistical methods that enable accurate estimation of
anthelmintic drug efficacy (ADE) is a high priority, both
for monitoring and evaluation (M&E) of control pro-
grammes [10] and for analysing outcomes from clinical
trials of the next generation of new [11–13] or repurposed
anthelmintics [14–16].

In this review, we show that established extensions of
generalized linear models (GLMs; see Glossary) [17] offer a

versatile and practical way of estimating ADE both at the
population level, in terms of an average effect, but also at
the level of the individual host. We review the predominant
methods currently used for estimating ADE, many of
which were developed in a veterinary context and are
based on sample statistics. These are contrasted with
modelling approaches using previously published data
on hookworm egg counts collected from Kenyan school-
children before and 1 week after treatment with albenda-
zole [18]. These data are summarized in Table 1 and are
referred to as the Kenyan schoolchildren dataset, abbrevi-
ated to KSD. We discuss the application of modelling
approaches, particularly in the context of the M&E of
ADE during MDA-based control of human helminthiases.

Cure rates and intensity reduction rates
Anthelmintic drug efficacy is typically, but not exclusively,
expressed as either a cure rate (CR) or an intensity reduction
rate (IRR). CRs (the proportion of those positive for parasites
that become parasitologically negative after treatment) are
calculated from binary data on the presence or absence of
infection; IRRs (the proportional reduction of infection load
effected by the treatment) are calculated from (typically
count) data on the intensity of infection. Both quantify
reduction in infection levels after treatment (the drug re-
sponse) as a percentage of infection levels before treatment
using longitudinal data from cohort studies.

CRs and IRRs can be calculated, in principle, using
parasitological, molecular, or any other type of data that
measure, respectively, infection status or infection inten-
sity. Currently there are few quantitative molecular meth-
ods which yield estimates of infection intensity [19], albeit
with some notable exceptions. One exception is measure-
ment of circulating filarial antigen (CFA) for Wuchereria
bancrofti (causing Bancroftian lymphatic filariasis) infec-
tion, although because of difficulties in counting adult
worms, quantities of CFA have not been calibrated to worm
burden, although this has been achieved in animal models
[20]. Other examples include measurement of circulating
anodic antigen (CAA), which have been correlated with
Schistosoma mansoni egg output [21], and quantitative
polymerase chain reaction (qPCR) for Ascaris lumbricoides
[22,23] and hookworm [24] infections. Consequently, mo-
lecular diagnostics are mostly used for measuring infection
status. Indeed, even for infections where molecular diag-
nostics do exist, or are undergoing field testing, ADE
remains overwhelmingly assessed using data on parasite
transmission stages (eggs or larvae). Therefore, we focus on

Review

1471-4922/

� 2014 Elsevier Ltd. All rights reserved. http://dx.doi.org/10.1016/j.pt.2014.08.004

Corresponding author: Walker, M. (m.walker06@imperial.ac.uk).
Keywords: marginal models; mixed models; mass drug administration; longitudinal
data; hookworm; albendazole.

528 Trends in Parasitology, November 2014, Vol. 30, No. 11

http://crossmark.crossref.org/dialog/?doi=10.1016/j.pt.2014.08.004&domain=pdf
http://dx.doi.org/10.1016/j.pt.2014.08.004
mailto:m.walker06@imperial.ac.uk


modelling approaches for such parasitological data, al-
though in principle the methods are readily adaptable to
other types of data.

Intensity reduction rates are more informative and
generally more desirable than CRs, and have been used
extensively for assessing anthelmintic efficacy in livestock.
Perhaps the most well-known IRR is the faecal egg count
reduction (FECR) [25], which is calculated from data on egg
counts in faeces. More recently, the WHO has endorsed
IRRs for the M&E of human schistosomiasis and soil-
transmitted helminthiasis (STH) MDA-based control pro-
grammes [26]. CRs are often criticised because some
anthelmintics are never truly curative (e.g., ivermectin
only affects the microfilarial progeny of adult female Onch-
ocerca volvulus and exerts only temporary deleterious
effects on worm fertility [27]). In addition, CRs are less
relevant to morbidity reduction since morbidity is, by and
large, associated with infection intensity [28], and do not
adequately reflect the impact of repeated rounds of treat-
ment in the context of MDA interventions in human popu-
lations [29]. In a research and development context (R&D;
e.g., clinical trials and epidemiological studies), intensity
should always be measured, permitting calculation of
IRRs. However, for M&E, logistical complexities and the
availability of field-ready quantitative diagnostic tools [19]
means that data on the presence of absence of infection is
common, guaranteeing the continued usefulness of CRs, or
other metrics based on binary data.

Contrasting methods of estimation
Anthelmintic drug efficacy can be estimated by two contrast-
ing approaches. Sample estimates (statistics), or sample

Glossary

Arithmetic mean: the sum of a collection of numbers divided by the number in

the collection, often simply called the mean or average.

Cure rate (CR): the proportion of individual hosts positive for parasites who

become parasitologically negative after treatment.

Exchangeable correlation: correlation among observations measured from a

single unit (e.g., multiple parasite counts measured from a single host) that is

assumed constant among units (i.e., among hosts).

Fixed and random effects: definitions of fixed and random effects vary with the

specific context [85]. Here, a covariate coefficients (parameters) specified as

fixed exert a constant effect among individuals while coefficients specified as

random effects exert a variable effect among individuals. Parameters exerting

random effects include a fixed component which represents the hypothetical

effect on the ‘average individual’ but not necessarily the average effect among

individuals.

Generalized estimating equation (GEE): a technique for estimating the

parameters of a marginal model fitted to correlated repeated measures

(observations). The GEE approach is semi-parametric because it relies on the

first two moments of the observed data, but not on the full likelihood.

Generalized linear model (GLM): an extension of the simple linear regression

model that is compatible with error distributions from any of the exponential

family of probability distributions, including the normal, Poisson, binomial,

and gamma distributions. The simple linear regression model is a GLM with

normally distributed errors.

Generalized linear mixed model (GLMM): an extended GLM that includes a

linear predictor comprised of covariate coefficients that exert both fixed and

random effects.

Geometric mean: a type of mean or average which quantifies the central

tendency of a set of numerical observations using the product, rather than the

sum, of their values. Typically, geometric means are calculated by first taking

the arithmetic mean of the log-transformed values before taking the exponent

of the result to transform back onto the original scale.

Hierarchical structure: observations that are nested within units to define a

natural hierarchy. Examples are multiple parasite counts measured within a

host; multiple hosts living within a single household; multiple households

within a single community. Such structure typically produces correlations

among repeated measures (observations) made on the same unit. Thus,

repeated measures cannot be assumed statistically independent.

Intensity reduction rate (IRR): the infection load after treatment expressed as a

proportion of the infection load before treatment.

Linear predictor: the linear combination of covariates and coefficients within a

statistical model.

Link function: a function that relates the expected value of a probability

distribution to the linear predictor within a statistical model. The natural

logarithmic link function is typically used within statistical models for count

data. For binomial models, where p is the probability of ‘success’, the logit link

is often used, logit (p) = ln[p/(1 – P)].

Longitudinal data: measurements or observations made repeatedly on the

same unit (repeated measures) through time; for example, multiple hookworm

egg counts made from the same host at different times.

Marginal model: an adaptation of a GLM for use with correlated repeated

measures (observations). Marginal refers to the marginal mean of observa-

tions from individuals (units) sharing a set of covariates. A marginal model

comprises three model components; a marginal mean which depends on

covariates; a marginal variance which is typically a function of the marginal

mean, and a correlation structure for the repeated measures.

Markov chain Monte Carlo (MCMC): a stochastic algorithm central to Bayesian

statistical inference which samples parameter values from the posterior

probability distribution by combining information from the likelihood of the

observed data and the prior probability distribution of the parameters.

Maximum likelihood (ML) estimation: a framework for estimating parameters

of a statistical model by conditioning the probability of the observed data (the

likelihood) on unknown parameter values using a probability distribution.

Odds ratio (OR): the ratio of the odds that an outcome occurs given a set of

covariates compared to the odds that the outcome occurs in their absence. For

example, the odds of observing (by Kato–Katz) hookworm eggs 1 week after

treatment with albendazole divided by the odds of observing hookworm eggs

immediately before treatment.

Overdispersion: the occurrence of variance that is greater than expected based

on a simple probability distribution. Extra-Poisson variation is an example of

overdispersed count data; where the variance is greater than expected if the

data were Poisson distributed (i.e., variance greater than the mean, n > m).

Posterior probability distribution (posterior): the probability distribution of a

random variable conditional on relevant observed data and prior information.

The posterior probability is proportional to the likelihood of the data

(conditional on a set of parameter values) multiplied by prior probability of

the parameters. That is, posterior probability / likelihood � prior probability.

Prior probability distribution (prior): the probability distribution of a random

variable that captures one’s uncertainty before (prior to) observing relevant

data. An uninformative or vague prior expresses a high degree of prior

uncertainty. This results in a posterior distribution which is dominated by the

likelihood of observed data. Conversely, an informative prior will dominate the

posterior if the data holds little information on the variable of interest.

Rate ratio (RR): the ratio of the rate of occurrence of an event given a set of

covariates compared to the rate of occurrence in their absence. For example,

the average number of hookworm eggs counted (by Kato–Katz) 1 week after

treatment with albendazole divided by the average number of hookworm eggs

counted before treatment.

Risk ratio (RR): the ratio of the probability of an event occurring given a set of

covariates compared to the probability of the event occurring in their absence.

For example, the probability of observing hookworm eggs (by Kato–Katz)

1 week after treatment with albendazole divided by the probability of observing

hookworm eggs before treatment.

Repeated measures: measurements or observations made repeatedly on the

same unit, for example, multiple hookworm counts measured from the same

individual host.

Restricted maximum likelihood (REML) estimation: an alternative to ML

estimation for models that include random effects. In REML estimation, the

dispersion of the random effects is estimated having averaged over some of

the uncertainty in the fixed effects. By contrast, in ML estimation, the fixed

effects estimates are treated as precisely correct.

Sample statistic: a quantity calculated from a sample of data using simple

mathematical functions which are independent of the sample’s distribution.

Sampling distribution: the hypothetical expected distribution of a quantity

estimated from a random sample of observations.

Sandwich estimator: a standard error (SE) of an estimated quantity that is

robust to misspecifications in the variance-covariance of the error distribution

in a statistical model. Sandwich estimators are typically used with marginal

models so that SEs (and confidence intervals) are invariant to inaccuracies in

the specification of the repeated measures correlation structure. In this context,

sandwich estimators are based on the empirically observed variation among

unit-level statistics rather than on the model-derived variance-covariance

matrix which depends on the assumed correlation structure [53].

Standard error (SE): the standard deviation of the sampling distribution of an

estimated statistic (e.g., an arithmetic or geometric mean).
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