Contents lists available at ScienceDirect

### Virus Research



journal homepage: www.elsevier.com/locate/virusres

#### Short communication

# Molecular characterization of rabies virus isolated from dogs in Tunisia: Evidence of two phylogenetic variants

Imen Khlif Amouri<sup>a</sup>, Habib Kharmachi<sup>a,\*</sup>, Ahlem Djebbi<sup>b</sup>, Mohamed Saadi<sup>a</sup>, Nahed Hogga<sup>b</sup>, Lotfi Ben Zakour<sup>a</sup>, Abdeljelil Ghram<sup>c</sup>

<sup>a</sup> Specialized Unit of Rabies, Pasteur Institute of Tunis, Tunis, Tunisia

<sup>b</sup> Laboratory of Clinical Virology, Pasteur Institute of Tunis, Tunis, Tunisia

<sup>c</sup> Laboratory of Veterinary Microbiology, Pasteur Institute of Tunis, Tunis, Tunisia

#### ARTICLE INFO

Article history: Received 24 May 2010 Received in revised form 7 October 2010 Accepted 14 October 2010 Available online 21 October 2010

Keywords: Lyssavirus Genotypes Epidemiology Lineage

#### ABSTRACT

In an attempt to explain temporal and geographical rabies incidence fluctuations in Tunisia, a molecular epidemiological study of rabies virus (RV) was carried out. A panel of RV isolates from dogs, collected between 1992 and 2003, from different regions in Tunisia have been analysed by direct sequencing of PCR-amplified products coding for the nucleoprotein gene. New sequences have been compared to prototype sequences of *Lyssavirus* species and nine lineages of species 1. All Tunisian isolates belonged to species rabies virus and segregated into two rabies lineages geographically distinct: NCS lineage characterizing Northeast, Central and Northern areas of the country and NW lineage more restricted to the North-Western regions. Phylogenetic analyses showed that Tunisian RV clustered most closely to Africa 1a lineage: NCS lineage showed nucleic affiliation with isolates from Algeria and Morocco, whereas, NW lineage shared a strong relationship with Ethiopian and Sudanese strains.

© 2011 Published by Elsevier B.V.

Rabies is a zoonotic viral disease of domestic and wild animals characterized by an infection of the central nervous system, causing encephalopathy and ultimately death.

Rabies virus (RV) belongs to the Lyssavirus genus of the Rhabdoviridae family and has a, negative-sense, single-stranded, RNA genome of approximately 12kb, which codes for five proteins designated N (nucleoprotein), P (phosphoprotein), M (matrix protein), G (glycoprotein) and L (polymerase) (Wunner et al., 1988). Gene sequencing and phylogenetic analyses of the N and G genes delineated eleven Lyssavirus species: Rabies virus (species 1), Lagos bat virus (species 2) (Boulger and Porterfield, 1958), Mokola virus (species 3) (Shope et al., 1970), Duvenhage virus (species 4) (Meredith et al., 1971), European bat lyssavirus 1 (species 5) (Schneider and Cox, 1994), European bat lyssavirus 2 (species 6) (King et al., 1994), Australian bat lyssavirus (species 7) (Fraser et al., 1996), Aravan virus (species 8) (Arai et al., 2003; Kuzmin et al., 2003). Khudiand virus (species 9) (Botvinkin et al., 2003; Kuzmin et al., 2003), Irkut virus (species 10) and West Caucasian bat virus (species 11) (Botvinkin et al., 2003; Kuzmin et al., 2003, 2005). Rabies virus is prevalent throughout the world and can be carried by domestic or wild animals; however the other species are more specific to hosts and geographic areas. Molecular analysis based on the genetic characterization of the RV isolates is an important tool for the understanding of epidemiological relationships and the investigation of origination and transmission patterns of endemic viruses. Data collected from such analyses lead to a more effective strategy of control and prevention of rabies viral infection.

In Tunisia, rabies is known to be enzootic and endemic, and the dog is the principal reservoir and transmitter of the disease (Sureau et al., 1982). The national rabies control program introduced in 1982, including mass vaccination campaigns of dogs, has reduced significantly the incidence of human and animal rabies cases (Kharmachi and Hammami, 1992). Nevertheless, temporal and geographical fluctuations of the rabies incidence were registered, with clear succession of recrudescence and fall of incidence periods. In 1992, 1996 and 2000, was registered higher rabies incidences in animal and human with 581/25, 187/7 and 266/2 cases, respectively (Kharmachi et al., 2007). Furthermore, until 1994, the rabies was restricted to the North and the Center of Tunisia; after this date, the first cases of rabies were reported in the southern regions of the country (Kharmachi et al., 2007). The genetic characterization of RV endemic isolates may contribute to better understanding and explanation of the rabies epidemiological evolution during last decades; such data are not available in Tunisia.



<sup>\*</sup> Corresponding author at: Unité Spécialisée de la Rage, Institut Pasteur de Tunis, 13 Place Pasteur, BP 74, Belvédère, 1002 Tunis, Tunisia. Tel.: +216 71 783 022; fax: +216 71 791 833.

*E-mail addresses*: h.kharmachi@yahoo.fr, habib.kharmachi@pasteur.rns.tn (H. Kharmachi).

| Table 1                                                   |                                              |
|-----------------------------------------------------------|----------------------------------------------|
| Tunisian rabies dog isolates with their respective region | s, years of isolation and accession numbers. |

| Samples | State       | Year | Isolate     | Accession number |              |
|---------|-------------|------|-------------|------------------|--------------|
|         |             |      |             | 3′N sequence     | 5'N sequence |
| 1       | Kairouan    | 1992 | DogTN/Kr92  | /                | EU643557     |
| 2       | Ariana      | 1992 | DogTN/Ar92  | Ì                | EU643556     |
| 3       | Sidi bouzid | 1995 | DogTN/Sz95  | l l              | EU643565     |
| 4       | Medenine    | 1995 | DogTN/Md95  | EU643545         | 1            |
| 5       | Tozeur      | 1996 | DogTN/Tz96  | EU643551         | EU643572     |
| 6       | kesserine   | 1996 | DogTN/Ks96  | EU643542         | EU643586     |
| 7       | kef         | 1996 | DogTN/Kf 96 | EU643540         | EU643583     |
| 8       | Gabes       | 1996 | DogTN/Gb96  | EU643532         | EU643564     |
| 9       | Jendouba    | 1996 | DogTN/Jd96  | EU643535         | EU643562     |
| 10      | Jendouba    | 1998 | DogTN/Jd98  | EU643536         | EU643560     |
| 11      | Ariana      | 1998 | DogTN/Ar98  | EU643555         | EU643569     |
| 12      | Gabes       | 1998 | DogTN/Gb98  | EU643533         | EU643566     |
| 13      | Bizerte     | 1998 | DogTN/Bz98  | EU643527         | EU643589     |
| 14      | Kesserine   | 1998 | DogTN/Ks98  | EU643543         | EU643587     |
| 15      | Kairouan    | 1998 | DogTN/Kr98  | EU643539         | EU643581     |
| 16      | Gabes       | 1999 | DogTN/Gb99  | EU643530         | EU643563     |
| 17      | Bizerte     | 1999 | DogTN/Bz99  | EU643528         | EU643561     |
| 18      | Jenbouba    | 1999 | DogTN/Jd99  | EU643537         | EU643588     |
| 19      | Medenine    | 1999 | DogTN/Md99  | EU643546         | EU643573     |
| 20      | Ariana      | 2000 | DogTN/Ar00  | EU643524         | EU643579     |
| 21      | Zaghouan    | 2000 | DogTN/Zg00  | EU643552         | EU643568     |
| 22      | Bizerte     | 2000 | DogTN/Bz00  | EU643529         | EU643580     |
| 23      | Nabeul      | 2000 | DogTN/Nb00  | EU643548         | EU643575     |
| 24      | Kesserine   | 2000 | DogTN/Ks00  | EU643541         | EU643585     |
| 25      | Nabeul      | 2001 | DogTN/Nb01  | EU643541         | EU643576     |
| 26      | Jendouba    | 2001 | DogTN/Jd01  | EU643534         | EU643559     |
| 27      | Beja        | 2001 | DogTN/Bj01  | EU643525         | EU643558     |
| 28      | Bizerte     | 2002 | DogTN/Bz02  | EU643525         | EU643582     |
| 29      | kairouan    | 2002 | DogTN/Kr02  | EU643538         | EU643570     |
| 30      | Tataouin    | 2002 | DogTN/Ta02  | EU643550         | EU643567     |
| 31      | Tunis       | 2003 | DogTN/Tn03  | EU643554         | EU643578     |
| 32      | Kairouan    | 2003 | DogTN/Kr03  | EU643553         | EU643571     |
| 33      | Sidi bouzid | 2003 | DogTN/Sz03  | EU643549         | EU643577     |
| 34      | Gabes       | 2003 | DogTN/Gb03  | EU643531         | EU643584     |
| 35      | Medenine    | 2003 | DogTN/Md03  | EU643544         | EU643574     |

This report attempt to respond to this epidemiological shortage by analyzing RV isolates collected between 1992 and 2003 and obtained from different regions of the country. Sequencing and phylogenetic analyses in two different regions of the nucleoprotein gene were conducted.

Among the dog brains specimens available in the laboratory and conserved since 1992, specimens used in this study were selected according to temporal and geographic criteria (Table 1): periods of recrudescence of the rabies incidence (1992, 1996 and 2000) and periods of fall of incidence (1995, 1998, 2001, 2002 and 2003) were included. Samples were also representative of both endemic regions (North and Center of Tunisia) and recently infected areas (South of the country). Viral RNA was extracted from 0.2 g of brain specimen by homogenization in a mono-phasic solution of phenol and guanidine (TRIzol, Gibco BRL) as specified by the manufacturer. Precipitated RNA was resuspended in sterilised water and quantified by spectrophotometry. RT-PCR protocol was performed essentially as described by Nadins Davis (1998). For cDNA synthesis, 2 µg of total RNA was reverse transcribed using 50 pmol of genomic sense primer RabN1 and MMLV reverse transcriptase (Invitrogen) in a total volume of 20 µl. The cDNA product was added to 80 µl of PCR reaction mixture containing 50 pmol antisense primer RabN5 and 0.5 U of Tag DNA polymerase (Invitrogen). After an initial heating at 80 °C for 5 min, the N gene amplification reached 35 cycles of denaturation at 94 °C for 1 min, annealing at 55 °C for 1 min, extension at 72 °C for 2 min and followed by a final extension at 72 °C for 10 min. For the samples detected as PCR positive, the expected bands of 1472 bp were excised from the agarose gel and purified with the commercial QIAQuik gel extraction kit (QIAGEN) and bi-directionally sequenced by the automate ABI PRISM 377 DNA Sequencer (PE Applied Biosystems) using the PCR primers. The sequencing arrays were performed according to the instructions of ABI PRISM Dye Terminator Cycle Sequencing Ready Reaction Kit. Phylogenetic analyses were carried out in order to, firstly, identify the Lyssavirus species, and secondly, characterize the Tunisian viral variants (if any) and evaluate their relationship with other rabies strains isolated throughout the world. For the species identification approach, sequences obtained in this work were compared to the nucleoprotein gene of Lyssavirus species reference isolates (Table 2). For the phylogenetic affiliation approach, the Tunisian strains were aligned with 17 representative N gene sequences obtained from GenBank (Table 2). These sequences correspond to 9 phylogenetic lineages of the species rabies virus (Kissi et al., 1995), and were chosen as they share a maximum of nucleotide similarity with the Tunisian viral sequences. Sequence alignments were performed using the Clustal X program (Thomson et al., 1997). Phylogenetic and nucleic distance analyses were conducted with Mega 2.1 program (Kumar et al., 2001) using neighbor joining method (Saitou and Nei, 1987) and kimura 2 parameter (Kimura, 1980). Phylogenetic trees were visualised with Mega 2.1 and the Treeview program. Robustness of the tree was accessed with branch supporting-values from bootstrap statistic analyses (1000 replicates). The sequences reported in this study were deposited in the EMBL sequence database under the accession numbers EU643524 to EU643589.

Thirty-two sequences of 388 bp were obtained in the amino terminus region (3'N) and 34 sequences of 343 bp in the carboxy terminus region (5'N). When aligned with prototype sequences of *Lyssavirus* species, all the Tunisian isolates clustered with the Pasteur Virus (PV) strain representative of rabies virus (species 1), with

Download English Version:

## https://daneshyari.com/en/article/3429012

Download Persian Version:

https://daneshyari.com/article/3429012

Daneshyari.com