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It’s all relative: analyzing microbiome data as compositions
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a b s t r a c t

Purpose: The ability to properly analyze and interpret large microbiome data sets has lagged behind our
ability to acquire such data sets from environmental or clinical samples. Sequencing instruments impose
a structure on these data: the natural sample space of a 16S rRNA gene sequencing data set is a simplex,
which is a part of real space that is restricted to nonnegative values with a constant sum. Such data are
compositional and should be analyzed using compositionally appropriate tools and approaches. How-
ever, most of the tools for 16S rRNA gene sequencing analysis assume these data are unrestricted.
Methods: We show that existing tools for compositional data (CoDa) analysis can be readily adapted to
analyze high-throughput sequencing data sets.
Results: The Human Microbiome Project tongue versus buccal mucosa data set shows how the CoDa
approach can address the major elements of microbiome analysis. Reanalysis of a publicly available
autism microbiome data set shows that the CoDa approach in concert with multiple hypothesis test
corrections prevent false positive identifications.
Conclusions: The CoDa approach is readily scalable to microbiome-sized analyses. We provide example
code and make recommendations to improve the analysis and reporting of microbiome data sets.

Crown Copyright � 2016 Published by Elsevier Inc. All rights reserved.

Introduction

High-throughput sequencing has provided the laboratory tools
needed for the large-scale culture-independent analysis of micro-
bial communities. However, studies often fail to replicate earlier
work even when similar technologies and strategies are used. For
example, four recent articles indicating a link between autism and
the gut microbiota have implicated many different associated
genera. In mouse models, de Angelis et al. [1] identified 74 differ-
ential operational taxonomic units (OTUs) composing at least 90%
of the sequence reads obtained, whereas de Theije et al. [2] reported
only three, and Hsiao et al. [3] reported 67. Although it is difficult to
directly compare results across studies because of different
sequencing and bioinformatic platforms, it is interesting to note
that the three groups had very little overlap in taxonomically
assigned genera, and the same named genus could exhibit statis-
tically significant change in different directions in different exper-
iments. In an additional study on humans, Kang et al. [4] identified

five additional taxa that distinguished Autism Spectrum Disorder
from neurotypical control patients. However, as shown below, ex-
amination of these data sets suggests that their conclusions could
be explained by chance alone. Although these autism studies serve
as facile examples, the literature on the microbiome of other con-
ditions are replete with similar experiments with the same
shortcomings.

Hanage [5] recently called for a skeptical re-examination of
microbiome research results by posing five questions, with the first
four being: Can experiments detect differences that matter? Arewe
examining correlation or causation? Is there a mechanism? Do the
experiments reflect reality? These questions are beginning to be
examined and addressed in detail by others.

Hanage’s final question, “could anything else explain the re-
sults,” was the most troubling because it is clear that the answer to
the last question is a resounding yes! For example, work from the
Microbiome Quality Control Consortium (http://www.mbqc.org)
shows that the wet laboratory, sequencing and computational ap-
proaches used can affect the quality, quantity, and scope of the data,
and thus, the conclusions reached. The consortium effort has
already led to changes that make the analyses more reproducible
(see e.g., [6e8]). A second example has been the realization that the
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reagents themselves often contribute contaminants to samples that
contain low amounts of inputs [9,10].

A further unappreciated problem is that of the sample space
itself. We contend the data generated by high-throughput
sequencing are multivariate and constrained by an arbitrary con-
stant sum. The constant sum constraint is imposed because all
sequencing instruments have a fixed upper bound on the number of
reads delivered. Data with this constraint are referred to as
compositional data (CoDa) [11], and the only information that can
be obtained from such a data set is that of the ratios between the
parts. We argue that it is more powerful and appropriate to
examine these data using the existing tools designed for CoDa that
have been used in the fields of geology and ecology [12]. Further-
more, we argue that sequencing data should be treated when
possible in a Bayesian manner as probability distributions rather
than as point estimates. Finally, we contend that proper statistical
practice of correcting for multiple hypotheses is essential since the
data are multivariate.

It may be helpful to draw an analogy between CoDa and pro-
portional mortality. In both instances, the true denominator is not
known and only relative information is obtained. In addition, var-
iables with small numbers of events (OTUs represented by low
counts, or deaths by rare causes) will be seen to be highly variable.
Thus, a cautious interpretation of the data set is required for CoDa
sets as it is for proportional mortality data sets.

In this article, we demonstrate the utility of the CoDa frame of
reference by comparing the buccal mucosa and tongue dorsum
samples from the Human Microbiome Project. The CoDa approach
almost completely separates samples from these adjacent sites, and
many distinguishing OTUs can be identified. We then re-evaluate
an available autism data set with this framework and make rec-
ommendations for future work.

The origin of high-throughput sequencing data

Data sets for 16S rRNA gene sequencing are generated from poly-
merase chain reaction amplified random environmental samples of
DNAmolecules.Weknowthat the totalnumberofmoleculesvariesby
sample. Forexample, total bacterial load isquitedifferent basedon the
environment (e.g., stool vs. mucous membranes), or across different
phases of a cellular growth cycle. The data returned are random
samples of the molecules in the environment, and each sample is
subject to an arbitrary constant sum constraint imposed by the
sequencer itself. Thus, the total number of reads assigned to an OTU
can provide no information about the number of molecules in the
original sample, and we can only investigate relative changes. This
limitation is acknowledged when investigators treat 16S rRNA gene
sequencing as proportions, percentages, or “relative abundances” in
the data analysis, and by the RNA-seq convention of normalizing the
counts across samples, an approach that has been advocated for
microbiome studies [13]. However, these two approaches both
effectively normalize all samples to a common denominator: relative
abundanceuses a constantdenominatorof 100, and the various count
normalization approaches use an empirically determined denomi-
nator unique for each experiment [14].

Problems in the analysis of compositional data

A composition quantitatively describes parts of some whole.
Parts are grouped in a vector of D positive components, x ¼
(x1,x2,.,xD). The composition is said to be closed when the sum of
all components add up to a constant, for instance 1,100, or amillion.
The major issue with these data is that the only relevant informa-
tion is contained in the ratios between components [11,15]. This
property means that a composition can be multiplied by any

positive constant without any change in its meaning. Thus, vectors
with proportional positive components are equivalent from the
compositional point of view [15e17]. Logarithmic transformation of
the ratios ensures that the scale of ratios is symmetrical so that the
permutation of numerator and denominator only causes a change
of sign and places values into an absolute scale. This so-called log-
ratio approach [11] allows inferences about CoDa to be performed
on logarithms of ratios, which do not change when the composition
is multiplied by a positive constant. Examples of these combina-
tions are simple log-ratios as ln(xi/xj), or more complex log-ratios as
lnððx1x2Þ1=2=ðx3x4x5Þ1=3Þ; they are called log-contrasts. Remarkably,
log-contrasts can be computed from nonclosed compositions.

The analysis of compositions in a raw form has several in-
consistencies. As first noted by Pearson in 1897 [18], the analysis of
compositions with a constant sum results in spurious correlations.
Several pitfalls can be detected evenwhen the compositions are not
closed.

Figure 1 uses a simple example to illustrate one issue with the
constant sum. Commonly an experimentalist wishes to count and
compare the total number of molecules in two samples. Samples
may contain many OTUs which values are independent and with
similar abundance, and here one OTU has a 10-fold difference. A
scatter plot of these two samples in the “Counts” panel shows that
we would infer by counting that the OTU represented by the blue
circle has increased 10-fold in sample B compared with sample A,
but that the rest are essentially unchanged.

The “Proportions” panel shows the same data when these
samples are subjected to DNA sequencing and random sampling in
which case counting is no longer valid. The data are now con-
strained to a constant sum: note that any constant sum is exactly
equivalent to a proportion and a constant scaling factor. All infor-
mation regarding the total number of molecules in each sample is
lost and only relative information remains. In the scatter plot, the
distortion introduced by the constant sum is readily apparent: the
invariant majority appear to have become less abundant, whereas
the blue OTU appears to become more abundant: however, it in-
creases only from 6.8% in A to 41.9% in B. Note that this is not lin-
early related to the actual 10-fold difference. If we had many such
samples, we would infer that the red OTUs are positively correlated
(they all went down together!), and that they are negatively
correlated with the blue OTU. This spurious correlation is caused
only by restricting the data to have a constant sum.

Spurious correlation also appears when reducing a full compo-
sition to a composition with fewer parts: that is, dealing with a so-
called subcomposition. Note that 16S rRNA gene sequencing data
sets are always subcompositions because the constituent OTUs that
are found in the samples depend on arbitrary decisions made
during the data analysis pipelines (see the filtering and cutoff
values recommended by Quantitative Insights Into Microbial Ecol-
ogy [19] and mothur [20] for examples).

As an example of this problem, consider a vector of proportions
like x¼ (x1,x2,x3,x4), which is reduced to y¼ C(x1,x2,x3), where C¼ 1/
(x1þx2þx3). Thus, y is a vector of proportions composed of only
three first parts of x: clearly y is a subcomposition of x. Table 1 il-
lustrates the sample covariance matrices for x and y for a synthetic
data set of counts produced by simulating four log-normal variables
with a given covariance structure (see the subcomposition code
block in the supplement). If we are interested in evaluating the
sample correlation between the first three components, we can see
that these values are markedly different in the complete composi-
tion x than in the subcompositon y. In fact, none of the correlations
involving the three initial components coincide, and differ sub-
stantially with no clear rule, thus deserving the name of spurious
correlation. While not observed here, it is worth noting that a
change of sign in the correlation is commonly found.
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