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a b s t r a c t

Purpose: Human microbiome studies are within the realm of compositional data with the absolute abun-
dances of microbes not recoverable from sequence data alone. In compositional data analysis, each sample
consistsofproportionsof variousorganismswitha sumconstrained toa constant. This simple feature can lead
traditional statistical treatments when naively applied to produce errant results and spurious correlations.
Methods: We review the origins of compositionality in microbiome data, the theory and usage of
compositional data analysis in this setting and some recent attempts at solutions to these problems.
Results: Microbiome sequence data sets are typically high dimensional, with the number of taxa much
greater than the number of samples, and sparse as most taxa are only observed in a small number of
samples. These features of microbiome sequence data interact with compositionality to produce addi-
tional challenges in analysis.
Conclusions: Despite sophisticated approaches to statistical transformation, the analysis of compositional
data may remain a partially intractable problem, limiting inference. We suggest that current research
needs include better generation of simulated data and further study of how the severity of compositional
effects changes when sampling microbial communities of widely differing diversity.

� 2016 Elsevier Inc. All rights reserved.

Introduction

Compositional data are vectors of nonnegative elements con-
strained to sum to a constant. This simple feature of composi-
tional data can have surprisingly adverse effects when traditional
methods of multivariate statistics are naively used [1]. The dan-
gers of ignoring the effects of compositionality were noted by
Pearson, who recognized more than a century ago, that “spurious
correlations” would result, should values constructed as pro-
portions be compared haphazardly [2]. Compositional data is
subject to the “closure problem” that occurs when components
necessarily compete to make up the constant sum constraint [3].
This can cause large changes in the absolute abundance of one
component to drive apparent changes in the measured abun-
dance of others, violating the assumption of sample indepen-
dence and creating inevitable errors in covariance estimates that
can lead to bias and flawed inference. Diverse academic disci-
plines have begun to appreciate the complexity of the analysis of
compositional data, ranging from forensics [4,5] and psychology

[6] to the assessment of antibiotic use [7] and nutritional epide-
miology [8].

In the case of the microbiome sequencing surveys, the composi-
tionalnatureof thedatacomes fromthe fact that a correctionmust be
made for different samples having different numbers of sequences
while the total absolute abundance of all bacteria in each sample is
unknown. These complications arise from sample collection, poly-
merase chain reaction (PCR) amplification, and the sequencing
technology itself fromwhich the absolute abundances of bacteria are
not recoverable from sequence counts, but the proportions of
different taxa are still relevant. Numerous schemes are used in the
literature to convert the number of sequences for each taxonwithin
each sample to relative abundance with popular techniques,
including proportional abundance and rarefying, the latter being the
default choice in the popular Quantitative Insights Into Microbial
Ecology pipeline [9,10]. Neither of these approaches corrects for
compositionality and it has been argued that this lack of correction
has led to erroneous analyses that fail to discriminate between true
and spurious correlations between taxa [11,12]. However, it remains
unclear whether these sorts of normalization schemes routinely
produce spurious correlations in the study of complex microbial
communities, like the gut, orwhether errors due to compositionality
are instead restricted to analysis of microbial communities where
only a few taxa dominate, such as the vaginal microbiome.
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In this review, we examine the historical literature on the com-
positionality problem and some modern approaches to its solution
that have been proposed for the analysis of next-generation
sequencing data sets. We track recent progress and indicate where
we think more research is needed. We also emphasize that the
analysis of compositional data will always be at least a partially
intractable problem despite the development of sophisticated statis-
tical transformations as the absolute abundances of microbes before
sequencing can never be recovered from sequence data alone, and
this will inevitably color inference based on compositional samples.

Compositional data sets are best analyzed after a log-ratio
transformation

The initial literature on compositional data analysis has largely
been attributed to a pioneering author, John Aitchison, whose
classic treatise, “The Statistical Analysis of Compositional Data,” has
remained enormously influential for nearly 3 decades [3]. However,
Aitchison, developing his theory in the 1980s, was analyzing data
sets considerably smaller than those of current next-generation
sequencing. His examples were often sourced from geology and
usually featured problems such as how different mineral compo-
nents were used to categorize variability in rock specimens. Despite
the relative simplicity of the data sets he analyzed, the theory
Aitchison developed was surprisingly complex. His work eventually
led to the realization that the unit-sum constraint yielded a new
geometrical space requiring a substantial background in advanced
multivariate linear algebra to fully appreciate. A central challenge
for researchers wanting to apply these elegant mathematical for-
malisms to modern genomics data is the complexity of sequencing
data sets, which, unlike simple geology data sets, can have tens of
thousands of different categories (high dimensionality), have zeros
dominating all other values (sparsity), and have a number of sam-
ples substantially fewer than the number of variables (under-
determination) [13,14]. Aitchison recognized these problems but
does not offer complete solutions to them in his treatise, and at-
tempts to satisfactorily address these difficult compositional data
sets continue to the current day.

Aitchison argued that taking the logarithm of ratios is a trans-
formation of compositional data that restores much of the utility of
traditional statistical analyses in situations such as relative abun-
dance. This transformation is structured so that the constant sum
constraint does not distort the underlying covariance or correlation
structure originating from the natural interaction of the components
[3]. A natural problem in using a ratio-based transformation is that
one has to choose what will be in the denominator; that is to say,
which value to use to normalize all the values in a sample. Aitchison
considered two possible transformations in his text, both of which
are still in use. The simplest transformation is to choose one
component as a reference. For example, in a metagenomics experi-
ment analyzed at the phyla level, one could choose as a reference the
phyla “Firmicutes.” Then all other taxawould be reported as a ratio of
each taxa to Firmicutes. Although compositionality was not the
motivation, this was in fact the transformation that was used in an
early landmark study of the humanmicrobiome, which reported that
the ratio of Bacteroidetes to Firmicutes was associated with obesity
in a human population (interestingly this observation has proven to
be difficult to replicate[15]). Choosing reference taxa has the
advantage of simplicity, but there may not always be an obvious
reference to choose and results may vary substantially dependent on
the choice of reference [13]. One solution might be to systematically
perform inference on every possible pair of taxa, but performing N2

analyses, and then correcting for N2 multiple hypotheses is not
usually feasible given the large numbers of distinct taxa in many
metagenomic analysis pathways. Aitchison called this simple choice

of using one reference taxon and taking the logarithm an “additive
log-ratio” (alr). As an alternative, Aitchison recommended trans-
forming each taxon within a sample by taking the log-ratio of the
counts for that taxon divided by the geometric mean of the counts of
all taxa, called the centered log-ratio (clr). This approach is neces-
sarily more robust than the additive log-ratio as it does not depend
on the choice of an arbitrary reference. This algorithm has found use
in the current microbial literature [16] where it was argued that this
transformation could be used to successfully analyze microbiome
data as well as RNA-seq data and, indeed, any next-generation
sequence data set. Egozcue et al. [17] later defined a third isometric
log-ratio transformation (ilr), which is the product of the clr and
the transpose of a matrix which consists of elements that are clr-
transformed components of an orthonormal basis. This ilr trans-
formation is an orthonormal isometry that addresses certain
difficulties of alr and clr, but its interpretability is subject to the se-
lection of its basis, which has somewhat limited its adoption [17].

Although the centered log-ratio has mathematical elegance and
has found sophisticated champions in the current metagenomic
literature, it has potential problems when applied to metagenomic
data sets. This difficulty arises from extreme variability of library
sizes and the great sparsity of metagenomic data sets. In a highly
sparse data set, the geometric mean of all taxa can often be zero or
near zero. Obviously, if it is zero, a transformation that involves
dividing by the geometric mean is undefined. One can of course
correct for this by adding a pseudo-count to each cell, but it is not
immediately clear what the value of this pseudo-count should be.
For example, if the value 1 is chosen for the pseudo-count, then
dividing by the geometric mean in a highly sparse data set is
equivalent to simply not normalizing the data (because you are
dividing by 1 before the log transformation). Performing statistical
inference on unnormalized datawill often lead to results that do not
reveal biological variability, but merely reflect differences in
sequencing depth [18]. For example,Weiss et al. [19] has shown that
the first principal coordinate analysis axes of data sets are oftenwell
correlated to the number of sequences per sample. This problem is
not ameliorated by a transformation such as taking geometric mean
while using a small pseudo-count (Fodor lab, unpublished data).

One could choose some other value for the normalizing counts
other than the geometric mean. Packages made for RNA-seq data,
DESeq, for example, use values based on medians or certain per-
centiles in the denominator [20,21]. This offers some of the ad-
vantages of the geometric mean, but there is still no guarantee that
even very high percentiles of a metagenomics data set do not yield
zeros subject to the routinely encountered sparsity. One article [18]
recommends the use of RNA-seq pipelines for analysis of meta-
genomic data but does not offer much guidance on how best to set
the normalizing threshold to avoid normalizing by zero or the
pseudo-count.

Another problem related to sequencing depth in metagenomic
experiments is the difficult decision of when to remove samples
that have few sequences [18,22]. In general, these samples tend to
be outliers. The low number of sequences in such samples may
reflect a PCR error or indicate a sample in which there was no input
microbial DNA and the sequences reflect kit microbes or other ar-
tifacts [23]. However, it is not clear how to define the cutoff value
that indicates that a sample has so few sequences that it should be
removed from downstream analysis. This difficult decision of
sequence count thresholds impacts the corrections for composi-
tional data described previously in ways that are not fully appre-
ciated as the compositionality corrections work in relative space,
but the decision to threshold is in absolute space, and the interac-
tion of making decisions in these two spaces is unclear.

It should be stressed that even with all the algorithms that have
been developed to appropriately analyze compositional data
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