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Challenges for case-control studies with microbiome data
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a b s t r a c t

Purpose: In case-control studies of the human microbiome, the goal is to evaluate whether cases differ
from controls in the microbiome composition of a particular body habitat and which taxa are responsible
for the differences. These studies leverage sequencing technology and spectroscopy that provide new
measurements of the microbiome.
Methods: Three challenges in conducting reproducible microbiome research using a case-control design
are compensating for differences in observed and actual microbial community composition, detecting
“rare” taxa in microbial communities, and choosing properly powered analysis methods. The significance
of each challenge, evaluation of commonly held views, analysis of unanswered questions, and sugges-
tions of strategies for solutions are discussed.
Results: Understanding the effects of these choices on case-control analyses has been underappreciated,
with an implicit assumption that further advances in technology will address all the current
shortcomings.
Conclusions: It is recommended that research on the human microbiome include positive and negative
control experiments to provide insight into bias, contamination, and technical variation. Research pro-
tocols such as these may afford a better opportunity to make quantitative and qualitative adjustments to
data, thereby reducing the risk of falsely positive results, increasing power to discover true disease
determinants, and enhancing interpretation across studies.

� 2016 Elsevier Inc. All rights reserved.

Introduction

Advances in sequencing technology and spectroscopy allow
deeper insight into the composition and function of the human
microbiome. New findings may have epidemiologic and clinical
implications. To translate these results to public health policy and
clinical practice, a precise understanding of our biological
measurements that ensures reproducibility is necessary. Failure to
account for differences in protocols can confound results from
different experiments and prevent generalizable discoveries [1].

In case-control experiments involving microbiome measure-
ments, the following questions are of interest to epidemiologists in
generating further hypotheses about disease mechanisms and
treatment:

1. Is there a difference in the a-diversity (within-sample
diversity) of bacteria observed in samples from cases versus
those of controls?

2. Do the observed quantities of bacteria in samples from cases
arise from a different multivariate probability distribution than
those from controls? If so, which bacteria are found in different
quantities in cases versus controls?

Choices in sample processing protocols and bioinformatics
protocols for measuring the microbiome can affect the ability to
find answers to these questions. In addition, differences across
laboratories in these choices can lead to contradictory conclusions.

Laboratories make different choices in microbiome measure-
ment protocols based on their particular environment of interest.
For example, in our measurements of the vaginal microbiome using
16S rRNA sequencing, we designed polymerase chain reaction (PCR)
primers that were sure to amplify Chlamydia and other key taxa
[2,3]. Doing so makes comparing our results to other studies using
different primers difficult, but the ability to detect particular taxa of
interest can be a higher priority. Contrary to claims from many
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microbiome researchers [1], not all laboratories should use the
same protocols for biological measurements, but should aim for the
best characterization of the environment and disease(s) of interest.
Understanding the effects of different choices in protocols, and
publishing details of protocols [4], then becomes of paramount
importance so that results frommultiple studies can be reproduced
and assimilated.

Because host-microbiome interactions are dynamic and com-
plex, clear signals are often difficult to detect in case-control studies
involvingmicrobiomemeasurements. Most studies to date focus on
only a single ’omic type at a single time point, thereby providing an
incomplete picture of the environment. Therefore, a careful treat-
ment of data is important for reproducible results.

I discuss three challenges in conducting reproducible micro-
biome research for case-control studies. For each, we present the
significance of the challenge, evaluate commonly held views, pose
unanswered questions, and suggest strategies for overcoming
them. The challenges are as follows:

1. Differences in observed and actual microbial community
composition.

2. Detecting “rare” taxa in microbial communities.
3. Choosing properly powered analysis methods.

Normalization methods have been proposed that address one or
more of these challenges based on certain assumptions regarding
sample processing. Normalization refers to modifications of pro-
cessed data, and its common use of the term sometimes confounds
the three issues. In this commentary, I tease out these challenges,
call into question our knowledge regarding typical assumptions for
normalization methods, and propose experiments that will provide
answers.

I focus here on 16S rRNA surveys, but the principles apply to
other omics technologies. The aim is not to disparage 16S tech-
nology as unusable. To the contrary, microbiome researchers know
themost about 16Smeasurements, and the challenges that I discuss
here are likely surmountable. Many of the other omics technologies
such as whole metagenome shotgun sequencing (WMGSS), cyto-
kine assays, and untargeted metabolomics suffer from many of the
same challenges as 16S rRNA surveys, and yet have additional layers
of difficulties that must be addressed.

A common myth in the microbiome research community is that
problems with microbiome measurements and differences in
choices among protocols can only be solved by further advances in
technology. The goal of this commentary is to dispel this myth and
demonstrate that many of the challenges in reproducibility of
microbiome research can be addressed with current technology.

Differences in observed and actual microbial community
compositions

Sources of bias

Bias is a difference in observed and actual microbial community
compositions. The presence of bias in 16S [5e8], WMGSS [1,9], and
whole genome amplification [10] studies is no secret. Bias refers to
differences in the observed and actual quantities in a measurement.
In 16S rRNA surveys, samples are collected from an environment,
filtered from nonorganic material (if needed), subjected to DNA
extraction, PCR amplification, sequencing, and taxonomic classifi-
cation. The end result is a table of counts of DNA fragments (reads)
assigned to each taxon or operational taxonomic unit. Each step in
this process can introduce bias and alter the signal so that the
observed community composition is different fromwhat is actually
there and affect conclusions drawn from case-control studies.

Evidence for bias

As an example, consider the samples in Figure 1. In five repli-
cates, the observed proportions of each bacterium exhibit low
variation, but the difference with the true mixing concentration is
substantial. Although Fusobacterium species comprised only 20% of
the mixture, the observed proportions were all between 50% and
70%. The observed proportions of Fusobacterium, Prevotella, Lacto-
bacillus, and Staphylococcuswere larger than the actual proportions.
The observed proportions of Gardnerella and Enterococcus were
consistently smaller than the actual proportions. The composition
of the positive control mock community is described in the Online
supplement.

Similar issues arise in the processing of samples for WMGSS,
metabolomics profiling, and cytokine assays. Compared to these
measurement technologies, addressing this issue for 16S rRNA
surveys is less complicated because the available reference data-
bases are more complete, sample degradation is typically not an
issue, constructing mock communities with known compositions is
straightforward, and technical variation is lower.

Current practices and open questions regarding bias

Some confuse variation with bias, and mistakenly assume that
the small differences between replicates means that there are no
problems with bias. In addition, control samples of mock commu-
nities with a precise quantitation of the bacteria are rare. Quality
control is sometimes performed with only environmental repli-
cates. Control experiments are not standardized and typically are
not published.

The current modus operandi is to either use only the presence
and/or absence of bacteria or to simply ignore the issue of bias. A
common view is that though the observed abundances in 16S rRNA
surveys are distorted, rank abundances are preserved. In other
words, if more reads are observed from bacterium A than bacterium
B, then there is more bacterium A than B in the original sample. In
reality, whether rank abundance is preserved or not remains an
open question.

Additional open questions regarding bias include

1. How much bias is due to each processing step?
2. Is bias an independent effect for each organism?
3. Can bias be modeled to estimate the true community

composition?

We recently published results of an experiment that provides
preliminary information about these three questions [8] but does
not address the rank abundance issue. The experiment involved
processing mixtures consisting of one to seven vaginally relevant
bacteria. By studying mock communities with known composi-
tions, we were able to accurately quantify overall bias. The median
total bias for Lactobacillus iners was 38.3% across the samples in
which it was included, meaning that more L. iners was typically
observed thanwas actually present. Themedian bias for Gardnerella
vaginalis was �30.6%, meaning that less was typically observed
than was actually present.

By conducting three experiments mixing equal amounts of cells,
DNA, and PCR product, and comparing the results, we quantified
the contribution to bias of each processing step. We found that DNA
extraction and PCR amplification contributed the most to bias, but
sequencing and classification contributed very little, indicating that
advances in sequencing technology will not address the issue. The
median bias due to DNA extraction ranged from �21.6% for Ato-
pobium vaginae to 17.6% for Lactobacillus crispatus. The median bias
due to PCR amplification ranged from �20.8% for L. crispatus to
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