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a b s t r a c t

Purpose: Many types of cancer have an underlying spatial incidence distribution. Spatial model selection
methods can be useful when determining the linear predictor that best describes incidence outcomes.
Methods: In this article, we examine the applications and benefits of using two different types of spatial
model selection techniques, Bayesian model selection and Bayesian model averaging, in relation to colon
cancer incidence in the state of Georgia, United States.
Results: Both methods produce useful results that lead to the determination that median household
income and percent African American population are important predictors of colon cancer incidence in
the Northern counties of the state, whereas percent persons below poverty level and percent African
American population are important in the Southern counties.
Conclusions: Of the two presented methods, Bayesian model selection appears to provide more succinct
results, but applying the two in combination offers even more useful information into the spatial
preferences of the alternative linear predictors.

� 2016 Elsevier Inc. All rights reserved.

Introduction

Colon cancer (International Classification of Diseases, Ninth Revi-
sion, Clinical Modification code: 153), accompanied by rectum cancer
(International Classification of Diseases, Ninth Revision, Clinical
Modification code: 154.1), is rankedas the thirdmost common tumor
type in the United States, with colon cancer being themore frequent
of the two. Routine screening for this cancer, particularly after the
age of 50 years, is encouraged because a good prognosis typically
accompanies an early diagnosis. Important risk factors of colon
cancer include nutritional inclinations, age, smoking status,
inflammatory bowel diseases, previous incidence of malignant dis-
ease, and some genetic traits [1e3]. Research examining the geog-
raphy of some of these risk factors suggests that there may be an
underlying spatial structure to the incidence of colon cancer [4,5].

The data of interest in this study are the 2003 colon cancer
incidence for the 159 counties in the state of Georgia, United States.

The Area Health Resource Files [6] data set provides ecological
predictors useful for explaining the variation in this outcome. The
chosen predictors are as follows: median household income (in
thousands of dollars), percent persons below poverty level (PPBPL),
unemployment rate of those aged 16 years or greater (UER), and
percent African American (AA) population. Other studies indicate
that poverty and race are associated with colon cancer incidence
[1,7]. Of the chosen variables, there is evidence to suggest that
median income and PPBPL may be correlated (see section titled
Data and Linear Predictor Alternatives). This same evidence could
also be an indicator of the underlying spatial effect that we believe
may play a role in colon cancer incidence. The age cutoff associated
with the unemployment variable may be criticized as much of the
younger population in this age range may not hold steady jobs as
they are full-time students. In the individual level data used to
create this county-level variable, “student” is an option as an
employment status.

Selecting appropriate linear predictors is one of the most
important aspects of data analysis, and this can become very
challenging when spatial structures are present in the data. Many
methods, such as variable selection, transformation selection,
model selection, model averaging, and other model uncertainty
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methods, have been proposed and explored to achieve these goals
[8e12]. In this article, we discuss the application of two types of
spatial model selection techniques, Bayesian model selection (BMS)
and Bayesian model averaging (BMA) [12e14], in modeling small
area cancer incidence. This is achieved by assigning prior proba-
bility distributions to each of the possible linear predictors. For
BMS, we simply choose the linear predictor associated with the
largest posterior probability as the true model. This type of infer-
ence works well when a single model stands out, but if that is not
the case, BMA is a more appropriate alternative method that can
produce a model that blends the alternative linear predictors. In the
BMA method, an average posterior mean and variance are calcu-
lated based on the posterior model probabilities. However, this
posterior mean and variance can be quite difficult to interpret [15].
An additional statistical issue involving these types of models re-
volves around the correlated spatial effect, and there have been
several studies examining the issues related to this [16e18]. Our
models, however, do not involve the correlated spatial random ef-
fect in this same way. Rather than using the effect as add additive
component in the separate linear predictors, we only use this
element as a structure within the model weights, and probabilities
produced with the model selection techniques.

This article is developed as follows. First, we describe the
available data and the linear predictors of interest. Second, we
explain the BMS and BMA methods to be applied. Next, we display
the results of using these methods to the colon cancer data using
these different model selection techniques. Finally, we discuss the
results and draw conclusions.

Materials and methods

Our data for this study involve measures of incidence of colon
cancer for each of the 159 counties in the state of Georgia, United
States and predictors from the Area Health Resource Files data set.
As our outcome of interest is the incidence of colon cancer, a
conditionally independent Poisson distribution is a reasonable
model for these data. This is a commonly assumed model for small
area counts in disease mapping [19] and is appropriate because the
Poisson distribution is a discrete frequency distribution that pro-
vides the probability of events occurring in a given area.

Data and linear predictor alternatives

The colon cancer data come from the online analytical statistical
information system (Oasis) of the Georgia Department of Public
Health. For the 1332 diagnosed colon cancers across the state in the
year 2003, there was approximately a mean incidence of 8.38 cases
per county where the minimum county level value was 0 and the
maximum value was 102. In these data, there are no missing values
at the county level.

The geographical distributions of the chosen predictors are dis-
played in Figure 1 and suggest some spatial clustering. An additional
indicator of the underlying spatial structure is made evident by the
pattern of standardized incidence ratios displayed in Figure 2. The
standardized incidence ratio is calculated as the ratio of the observed
colon cancer incidences to the expected rates for each of the 159
counties and can be useful as a first step in data analysis [20]. Quali-
tatively, for these data, there does appear some spatial structure.

Based on the chosen predictors (median income in
thousandsdx1, PPBPLdx2, UERdx3, and percent AA pop-
ulationdx4), we have used three possible linear predictors for use
with both the BMS and BMA methods. Table 1 displays these
alternative predictor options. The first linear predictor (Alt1) in-
cludes all the covariates. The second (Alt2) includes only income
and percent AA population. The third and final linear predictor

(Alt3) includes PPBPL and percent AA population. Note that all our
possible linear predictors contain an uncorrelated random effect to
aid in accounting for any uncontrolled for parameters or extra noise
present in the data, and they differ by the predictors included.
Additionally, for all these linear predictor alternatives, the prior
distributions are such that:

uidwNormð0; suÞ; suwGamð1;0:5Þ; and ajdwNormð0;1Þ
Where i ¼ 1,., 159, d ¼ 1,., D such that D is the number of

linear predictors to be selected between, and j¼ 0,., J such that J is
the number of predictors for the dth model.

We alternate income and PPBPL in the second two linear pre-
dictors because there is evidence to suggest that they may be
correlated. This is not an uncommon assumption as, typically, when
income is higher, poverty is lower, as shown in Table 2. This table
illustrates, through individual Poisson model fits, that median in-
come and PPBPL are collinear with respect to the incidence of colon
cancer outcome because PPBPL becomes well estimated when me-
dian income is removed from themodel.We also note some changes
in percent AA population when PPBPL is used in place of median
income. These individual model fits were performed using Bayesian
approximation techniques by way of the R package INLA [21,22].

In addition to collinearity, the changes seen in the parameter
estimates could also indicate that some of these predictors may be
more important in certain regions of the county map. This indica-
tion will be further explored with the application of the BMS and
BMA techniques. The covariates were standardized before fitting
the models.

Statistical methods

In what follows, we describe the methodology associated with
the BMS and BMA techniques which are implemented using the R
package BRugs which calls OpenBUGS [23,24].

Bayesian model selection
To evaluate a number of alternative linear predictor models, we

adopt a method which fits a variety of models, and the selection of
weights allows each model to be evaluated for its appropriateness.
In general, for d ¼ 1; ::::;D models, the following structure applies:
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where 4id is our dth model’s suggested linear predictor for the ith
county complimented with a possible uncorrelated random effect.
In general, wewrite 4id as xTi bdjdj þ uijd; Jþ1 with xTi , the vector of J
possible covariates ðj ¼ 1;.; JÞ, and jdj an indicator for if the jth
predictor or random effect is to be included in the linear predictor
of the dth model. Hence, for a variable not included in the dth
model, jdj would be zero, otherwise it would be one. Further,wd is a
model indicator, equal to 1 if the dth model is selected and zero
otherwise. The model selection probability for the dth model in the
ith county is given by the probability pid. Additionally, in the
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