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Mortality cohort effects frommid-19th to mid-20th century Britain:
did they exist?
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a b s t r a c t

Purpose: Identification is a central problem with ageeperiodecohort analysis. Because
age þ cohort ¼ period, there is no unique solution to the linear effect using generalized linear modeling,
but cohort effects have caused greater controversy than age and period effects. To illustrate the
magnitude of cohort effects given the presence of collinearity, we reanalyze data from the seminal study
by Kermack et al, with an update.
Methods: Relative mortality data in England and Wales between year 1845 and 1995 were analyzed using
partial least squares regression. There were seven age groups ranging from 5 to 74 years old and 16
periods with 22 cohorts.
Results: Our reanalysis seemed to support the existence of cohort effects in the mortality trends. Period
and cohort effects were generally consistent with changes in the social, economic, and environmental
factors taking place in the last two centuries. Our analysis also showed a declining trend in period effects
up to 1950s.
Conclusions: Partial least squares and related methods provide intuitive pointers toward the separation of
linear age, period, and cohort effects. Because statistical algorithms cannot distinguish between relative
and actual mortality rates, cohort effects may be underestimated because of contamination by negative
age effects.

� 2014 Elsevier Inc. All rights reserved.

How to separate the distinct linear effects of age, period, and
birth cohort on the changes in, for example, attitudes, behaviors,
and health outcomes in the population has a long and controversial
history in epidemiology and social sciences [1e9]. Age effects
typically reflect changes in the distribution of an outcome across
the life course, reflecting changes in the distributions of biological,
developmental, and sociological risk factors independent of period,
and generational experience [10]. Most approaches to assessing
age, period, and cohort effects consider age effects as nearly uni-
versally present for most outcomes [1e4]. Period effects are usually
considered to reflect environmental experiences common to a
given period, which affects thewhole population living at that time.
People of different ages at a given period share the same experi-
ence. Birth cohort effects are collective environmental effects
uniquely experienced by groups of individuals born around the
same time [10]. They are generally considered to be the

consequence of events occurring during particular sensitive periods
of the life course, often early life, including the in-utero and early
postnatal period. Although age, period, and birth cohort effects
seem to be conceptually unique, they are nevertheless mathemat-
ically related because age þ cohort ¼ period. Consequently, when
traditional regression models attempt to simultaneously consider
age, period, and cohort effects as linear constructs, there is no
unique solution, giving rise to the identification problem. Recently,
several approaches have been proposed to deal with this collin-
earity; whereas some approaches make implicit constraints about
the relations among the three effects to allow them to become
estimable [11e14], others use smoothing functions to obtain age,
period, and cohort effect patterns [15e17].

Despite having some resonancewithin epidemiology, particularly
with regard to the fetal/developmental origins of health and disease
hypothesis, cohort effects have probably caused greater controversy
than age and period effects in the past [18e20]. Data used for most
ageeperiodecohort analyses are aggregated data crosstabulated by
age and period, inwhich cohort is represented by the diagonals. Early
and recent cohorts therefore have fewer observations than those in
the middle and are often more elusive to detect.
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Changes in generations’ mortality in England and Wales

The pioneering study by Kermack et al. [21] was an important
early work that apparently demonstrated cohort effects in mortality
in England and Wales. Using the mortality at year 1845 as a refer-
ence, their study showed a clear decline in mortality for groups for
age more than 5 years beginning around the year 1845 and seen in
later periods for the same cohort. This finding has been interpreted
in terms of the impact of social and environmental factors from the
mid-19th century onward on population health. Although the study
by Kermack et al. has been influential, cohort effects shown by their
analysis are still being questioned [20]. In this article, we revisit the
cohort effects in Kermack et al. using partial least squares regression
to address the identificationproblem [22].Wewill also discuss issues
related to the use of relative mortality in identifying cohort effects.

Materials and methods

We used the relative mortality data in England and Wales be-
tween year 1845 and 1995, which was first presented by Kuh and
Davey Smith [23,24] with updates obtained from the web site for
Office for National Statistics, London [22,25]. There were seven age
groups ranging from 5 to 74 years old and 16 periods with 22 co-
horts. Following a similar approach by Roberson and Boyle [26], we
first used a three-dimensional perspective plot to show the trends
in the relative mortality rates with the use of the earliest period as
the reference (Fig. 1). In Figure 1, as each diagonal from one of the
age groups in different periods represents a cohort, a trend from the
bottom left to the upper right across diagonals would suggest
cohort effects; there seemed to be a decreasing trend in mortality
after 1845 from the earliest cohort at the upper left corner to the
most recent cohort at the lower right corner, which seems to sug-
gest a cohort effect. However, as age, period, and cohort effects are
not independent, a visual examination alone could be misleading.

We then used partial least squares regression, to estimate the age,
period, and cohort effects [27e30]. As details of partial least squares
regression have been described elsewhere, we only gave a brief
explanation here. For the analysis of crosstabulated data with seven
age groups and 16 periods, the linear model for the natural log
transformation of relative mortality rate (MR) with all the dummy
variables for age, period, and cohort groups is written as follows:

logðMRÞ ¼ a0 þ
X7
i¼1

aiagei þ
X16
j¼1

bjperiodj þ
X22
k¼1

gkcohortk þ ε

(1)

where a0 is the intercept, ε the residual error term, and ai, bj, and gk

are the regression coefficients for the dummy variables. As first
shown by Kupper et al. [31], after all the variables are centered,
there are four identification problems in Equation 1.
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where a and p are the number of groups of age and period, that is,
seven and 16, respectively. As shown in our previous study [30],

partial least squares regression implicitly applied the following
constraints on the parameters to make Equation 1 estimable.
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Fu [16]and laterYangetal. [11,12]proposedtheuseof theEquations
4 and 5 as a solution to the identification problem, and their proposed
solution is widely known as the intrinsic estimator. From a mathe-
matical viewpoint, imposing Equations 4 and 5 in the estimation is
equivalent tousing theMooreePenrosegeneralized inversemethodto
obtainaunique inversematrix for theperfectlycollineardesignmatrix
that consist of all the age, period, and cohort variables [7,11,30].

Partial least squares analysis is a data-reduction technique and
successively extracts orthogonal components, which are weighted
combinations of explanatory variables [30]. The first component
has the largest covariance with the outcome variable and the sec-
ond component has the second largest covariance, etc. Usually, the
first few components can explain most of covariance with the
outcome. For seven age groups, 16 period groups, and 22 cohort
groups, the total number of dummy variables is 45, but the rank of
the design matrix is only 41 owing to four collinearity constraints
(Equations 2 and 3). The maximum number of components can be
extracted is therefore 41. As shown in our previous studies [29,30],
the weights in any partial least squares component always satisfy
the constraints in Equations (4) and (5), and consequently, the
partial least squares regression coefficients will satisfy these con-
straints irrespective of the number of components. We have shown
elsewhere that when the maximum number of components is
extracted, results from partial least squares regression is equivalent
to that from the MooreePenrose generalized inverse method.
Consequently, when the maximum number of partial least squares
components is extracted, the intrinsic estimator and partial least

Fig. 1. Perspective plot for relative mortalities in England and Wales between 1845
and 1985.
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