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Multiplicity control is an important statistical issue in clinical trials where strong control of the type I error rate is re-
quired.Manymultiple testingmethods have beenproposed and applied to addressmultiplicity issues in clinical trials.
This paper provides an application oriented and comprehensive overview of commonly usedmultiple testing proce-
dures and recent developments in statistical methodology inmultiple testing in clinical trials. Commonly usedmulti-
ple testing procedures are applied to test non-hierarchical hypotheses and gatekeeping procedures can beused to test
hierarchically ordered hypotheseswhile controlling the overall type I error rate. The recently developed graphical ap-
proach has the flexibility to integrate hierarchical and non-hierarchical procedures into one framework. A graphical
multiple testing procedurewith “no-dead-end” provides an opportunity to fully recycleα across hypothesis fam-
ilies. Two hypothetical clinical trial examples are used to illustrate applications of these procedures. The advan-
tages and disadvantages of the different procedures are briefly discussed.

© 2015 Elsevier Inc. All rights reserved.

1. Introduction

Multiple testing problems or multiplicity issues are often encoun-
tered inmodern clinical trials.Multiple objectives are typically designed
to be addressed in a single clinical trial. The objectives can be defined by
multiple dose levels, multiple endpoints, or multiple populations. The
multiplicity issue associated with multiple objectives in clinical trials
is one of themost important statistical problems for the pharmaceutical
industry and regulatory agencies. From the industry's perspective, early
stage clinical trials (such as phase I or II) without proper multiplicity
control may result in false positive findings, which could result in
advancing ineffective drugs to the confirmatory stage, and wasting
resources that could be used to develop alternative effective drugs.
From the agencies' perspective, clinical trials where the multiplicity
issue is not properly handled may lead to unsubstantiated claims for
the effectiveness of a drug as a consequence of an inflated rate of false
positive conclusions. EMA published a guidance document “Points to
Consider on Multiplicity Issues in Clinical Trials” in 2002 [1]. FDA is ex-
pected to issue a draft guidance onmultiplicity issues in the near future.

Multiplicity issues are primarily related to controlling the type I
error rate, which is the probability of rejecting the null hypothesis
when it is true. There are two levels of the type I error rate. One is
referred to as the comparison-wise error rate, which is for a single
hypothesis. The other one is referred to as the family-wise error rate
(FWER), which is for all hypotheses being tested. Regulatory guidance
requires strong control of the FWER (or the overall type I error rate)

which is the probability of rejecting at least one true null hypothesis
under all possible configurations of the null hypotheses. The FWER
can be heavily inflated if multiple testing is not properly addressed in
clinical trials. As an illustrative example, we assume that there are m
independent tests and each test has a type I error rate of 0.05. If no ad-
justment of the significance level is made for each test, i.e., 0.05 is still
used for each hypothesis test, then the final family-wise type I error
rate for all m tests will be 1− (1− 0.05)m, which is inflated compared
to the pre-specified 0.05 level. For example, if m= 2, the inflated type I
error rate will be 0.095; if m = 3, the inflated error rate is 0.143. The
bigger m is, the higher the inflated type I error rate. Therefore, multiple
testing procedures are needed to control the FWER at the desired level.
If m is large (e.g., in genetic studies where over 10,000 hypotheses
are tested), the control of the false discover rate (FDR) [36] is commonly
used. However, FDR may not necessarily control FWER in the
strong sense which is typically required in the registrational clinical
trial setting.

In clinical trial designs, due to different clinical interpretations and
inter-relationship among the hypotheses, we can generally categorize
the relationships among multiple hypotheses into two categories:
1) non-hierarchical relationships, and 2) hierarchical relationships.
Hierarchical relationships include situations where certain hypotheses
(or groups of hypotheses) should only be tested following rejection of
other hypotheses. Non-hierarchical relationships are appropriate
when strict ordering among hypotheses is absent. Correspondingly,
multiple testing procedures are tailored towards either non-hierarchical
testing or hierarchical testing. In the following sections, the multiple
testing procedures discussed in this paper will be grouped into
hierarchical procedures and non-hierarchical procedures.
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Multiple testingmethods have been widely investigated in the litera-
ture. For example books on multiplicity methodology have been
authored by Hochberg and Tamhane [2], Westfall and Young [3], and
Hsu [4]. Hommel, Bretz and Maurer [5] reviewed multiple testing
methods based on ordered p-values and their mathematical linkage.
Recently, Alosh et al. [6] reviewed advanced multiplicity adjustment
methods focusing on gatekeeping procedures and graphical approaches
in clinical trials. This paper aims to provide an application oriented and
comprehensive review of commonly used statistical methodology for
multiplicity issues aswell as recent developments inmultiple testing pro-
cedures. Illustrative examples will be used to compare different multiple
testing procedures under different scenarios of multiple hypotheses.

This paper will be organized as the following: Section 2 describes
notations and two examples to be used in the subsequent sections;
Section 3 focuses on non-hierarchical procedures for multiple testing
of non-hierarchical hypotheses; Section 4 focuses on multiple testing
procedures for hierarchical hypotheses, including methods used for
hypotheses with simple ordering (such as the fallback and fixed
sequence procedures) and various gatekeeping strategies used for the
more complex hierarchical hypotheses; Section 5 reviews the graphical
approach which can be used for handling both non-hierarchical and
hierarchical hypotheses testing; and Section 6 finisheswith a discussion
of the merits of each method.

2. Notations and example settings

For the purpose of demonstration, we use the following notations
and example settings to illustrate the application of each multiple
testing procedure. Let H1, …, Hm be the null hypotheses, p1, …, pm be
the raw p-values, and p(1) ≤ … ≤ p(m) be the ordered p-values from
the smallest to the largest with H(1), …, H(m) being the corresponding
ordered hypotheses. The family-wise error rate (FWER) will be
controlled at the α level (two-sided α = 0.05). To better illustrate the
application of each procedure,wewill use two examples of hypothetical
trialswith two and four hypotheses, respectively. In both examples, two
doses are compared with control. The first example considers only one
primary endpoint, while the second example considers two endpoints
(primary and secondary). Let H1 and H2 be the hypotheses on the
primary endpoint for Dose 1 and Dose 2, H3 and H4 be the hypotheses
on the secondary endpoint for Dose 1 and Dose 2, respectively.
The first example will be used to illustrate non-hierarchical multiple
testing procedures for the non-hierarchical hypotheses in Section 3.
Hierarchical testing procedures and the graphical approaches will be
illustrated with the second example in Sections 4 and 5. To be specific,
we consider scenarios with the following raw p-values:

• Example 1: twodose groupswith only oneprimary endpoint. H1 is the
comparison between Dose 1 and control and H2 is the comparison
between Dose 2 and control. The corresponding raw p-values for the
two hypotheses are: p1 = 0.04, p2 = 0.024.

• Example 2 (Fig. 1): two dose groups with one primary endpoint and
one secondary endpoint. H1 is the comparison between Dose 1 and
control and H2 is the comparison between Dose 2 and control for
the primary endpoint. H3 is the comparison between Dose 1 and
control and H4 is the comparison between Dose 2 and control
for the secondary endpoint. The corresponding raw p-values are:
p1 = 0.02, p2 = 0.015, p3 = 0.012, p4 = 0.04.

3. Multiple testing procedures for non-hierarchical hypotheses

We categorize multiple testing procedures for non-hierarchical
hypotheses as “non-hierarchical” multiple testing procedures
which include commonly used procedures such as the Bonferroni
procedure, the Holm procedure, the Simes based procedures
(Hochberg and Hommel procedures) and the Dunnett procedure.
These methods are commonly used in medical research [5].
Descriptions of each procedure and applications with Example 1
follow. For simplicity, we may use the term “accept a hypothesis”
to mean “not able to reject a hypothesis”.

3.1. Common testing procedures

3.1.1. Non-parametric and semi-parametric procedures

3.1.1.1. Bonferroni procedure. The Bonferroni procedurewas first applied
by Dunn [7,8] to control the type I error rate for multiple comparisons.
It adjusts the significance level for each individual test so that the overall
type I error rate is controlled at the desired level. The decision rule for
the Bonferroni procedure is: reject Hi if pi ≤ α

m ; for i ¼ 1;…;m, where
m is the total number of tests. The raw p-values for each test can also
be adjusted by multiplying each p-value by m without changing the
significance level, which is equivalent to adjusting the significance
level for each test. The Bonferroni procedure is widely used due to its
simplicity, but it is conservative, especially if m is large and the test
statistics are positively correlated.

3.1.1.2. Simes procedure. Simes [9] proposed a modification of the
Bonferroni procedure; it rejects the global null hypothesis HI =
∩ i = 1

m Hi if pðiÞ ≤ iα
m for at least one i = 1, …, m. The Simes procedure

controls the family-wise error rate in the weak sense (i.e., under
the intersection of null hypotheses) under independence of the
test statistics and the overall type I error rate is controlled if positive
regression dependence of the test statistics holds [9,13]. Since the
Simes procedure is a global test, it cannot be used for testing
individual hypotheses.

3.1.1.3. Holm step-down procedure. The Holm procedure is a non-
parametric Bonferroni-based procedure [10]. It is derived via the
closed-testing principle. It controls the family-wise error rate without
any assumptions on the hypotheses and is uniformly more powerful
than the Bonferroni procedure. At the first step, H(1) is tested by
comparing p(1) with α/m; if p(1) N α/m, then all hypotheses are
accepted and testing stops. Otherwise H(1) is rejected and one
proceeds to test H(2) by comparing p(2) with α/(m − 1). In general,
if p(k) N α/(m − k + 1), then hypotheses H(k) … H(m) are accepted
and testing stops; otherwise, reject H(k) and proceed to test H(k + 1).
The nominal significance levels for H(1), H(2), …, H(m) are:

α1 ¼ α
m

;α2 ¼ α
m−1

;…;αm ¼ α
1
¼ α:

3.1.1.4. Hochberg step-up procedure. The Hochberg step-up procedure is
a semi-parametric Simes-basedprocedure [11]. It ismore powerful than
the Holm procedure. It is semi-parametric due to the fact that it only
guarantees the control of the type I error rate under independence or
certain positive dependence structures of the test statistics [13]. It is
slightly more conservative than the Hommel procedure but is widely
utilized due to its simplicity for usage in practice. It uses the same nom-
inal significance levels as the Holm procedure but tests the hypotheses
in a step-up manner, i.e., it begins with the hypothesis corresponding
to the least significant p-value. In general, having accepted H(m), …,
H(k + 1), if p(k) ≤αk, the procedure rejects H(k),…, H(1) and stops testing.
Otherwise, it accepts H(k) and goes on to test H(k-1).
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Fig. 1. Illustration of Example 2.
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