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The past decadewitnessedmajor developments in innovative designs of confirmatory clinical trials, and adaptive
designs represent the most active area of these developments. We give an overview of the developments and
associated statistical methods in several classes of adaptive designs of confirmatory trials. We also discuss their
statistical difficulties and implementation challenges, and show how these problems are connected to other
branches of mainstream Statistics, which we then apply to resolve the difficulties and bypass the bottlenecks
in the development of adaptive designs for the next decade.

© 2015 Elsevier Inc. All rights reserved.

1. Introduction

Because of the lack of information on both the magnitude and the
sampling variability of the treatment effect of a new treatment at the
design stage, there has been an increasing interest from the biopharma-
ceutical industry in adaptive designs that can adapt to the information
collected during the course of the trial. Beginning with Bauer [1], who
introduced sequential adaptive test strategies over a planned series of
separate trials, and Wittes and Brittain [2] who considered internal
pilot studies, a large literature has grown on adaptive design of clinical
trials. In Section 2 we review several directions of development and
basic methodologies in that literature. Despite the vibrant research
activities and the attractiveness of adaptive designs that provide a
promising alternative to and major advance over standard clinical trial
designs which are handicapped by insufficient information at the
planning stage, these adaptive designs are fraught with statistical and
implementation difficulties which have been impediments to their
widespread use. Section 3 discusses these difficulties and reviews in
this connection related aspects of the FDA Draft Guidance for Industry
on Adaptive Design, for drugs and biologics, in 2010.

In Section 4 we describe some new advances in adaptive designs to
address these difficulties and to respond to certain issues raised by the
FDA Draft Guidance. We also use an adaptive clinical trial currently
being planned at the Stanford Stroke Center to illustrate the new

methodologies and their implementation. Section 5 gives some con-
cluding remarks and further discussion of the challenges and opportuni-
ties of adaptive designs for Phase III clinical trials in drug development.

2. Adaptive designs: overview of methods and developments

In this section we give an overview of the developments of adaptive
design of clinical trials together with the associated statistical methods
that have been used or introduced. The overview is divided into two
parts, the first of which is on frequentist methods, reviewed in
Sections 2.1 and 2.2, that have evolved from the seminal papers [1]
and [2]. The second part is on Bayesian adaptive designs, which are
reviewed in Section 2.3 and which are arguably the most active area
of clinical trial innovations for testing cancer treatments.

2.1. Sample size re-estimation

In standard clinical trial designs, the sample size is determined by
the power at a given alternative, but in practice, it is often difficult for in-
vestigators to specify a realistic alternative at which sample size deter-
mination can be based. Although a standard method to address this
difficulty is to carry out a preliminary pilot study, the results from a
small pilot study may be difficult to interpret and apply, as pointed
out by Wittes and Brittain [2], who proposed to treat the first stage of
a two-stage clinical trial as an internal pilot fromwhich the overall sam-
ple size can be re-estimated. The specific problem considered by [2] as
an example of internal pilots actually dated back to Stein's two-stage
procedure [3] introduced in 1945 for testing hypothesis H0:μX = μY
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versus the two-sided alternative μX ≠ μY for the means of two
independent normal distributions with common, unknown variance,
and based on i.i.d. observations X1, X2, … ∼ N(μX, σ2) and
Y1, Y2, … ∼ N(μY, σ2). Let tv,α denotes the upper α-quantile of the
t-distribution with ν degrees of freedom. In its first stage, Stein's proce-
dure samples n0 observations from each of the two normal distributions
and computes the usual unbiased estimate s0

2 of σ2. In the second stage,
it samples up to

n1 ¼ n0∨ t2n0−2;α=2 þ t2n0−2;β
� �2 2s20

δ2

� �
ð1Þ

observations from each population, where α is the prescribed type I
error probability, and 1 − β is the prescribed power at the alternatives
satisfying |μX− μY|= δ. The null hypothesisH0:μX= μY is then rejected if

jXn1−Yn1 jNt2n0−2;α=2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2s20=n1

q
. Stein's two-stage procedure is modified

in [2,4] as follows. Viewing jXn1−Yn1 j=
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2s21=n1

q
as a fixed-sample test

statistic based on a sample of size n1 from each population, the test sta-
tistic has the non-central t-distributionwith 2n1− 2 degrees of freedom

andnon-centrality parameterδ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
n1= 2s21

� �q
at the alternative μX− μY= δ.

Fixing α, β and δ, let n(σ2) denotes the smallest n1 for which the proba-
bility exceeds 1 − β that an observation from this distribution exceeds
the critical value t2n1−2;α=2. An estimate of the total desired sample size
based on a pre-trial estimate σ0

2 of σ2 is n(σ0
2). Following a pilot study

of size n0 per arm, which results in the variance estimate s0
2, the total

sample size can be re-estimated as n(s02). At this point there are many
options for how to proceed. In particular, [2] recommends taking the
maximum of n(σ0

2) and n(s02) as the new total sample size, while [4]
recommends retaining n(σ0

2) unless n(s02) is substantially larger.
The aforementioned papers and subsequent refinements [5–7]

represent the “first generation” of adaptive designs. The second-
generation adaptive designs adopt a more aggressive viewpoint of
re-estimating the sample size from the estimate of δ (instead of the nui-
sance parameterσ) based on the first-stage data, startingwith Fisher [8]
for the case of normally distributed outcome variables with known
common variance σ2, which can be assumed to equal 1/2 without loss
of generality. If n is the original sample size per treatment, then after
rn pairs of observations (0 b r b 1), n−1=2S1∼N rδ

ffiffiffi
n

p
; r

� �
, where S1 =

∑i = 1
rn (Xi − Yi). If it is now desired to change the second-stage sample

size from (1 − r)n to γ(1 − r)n for some γ N 0, then conditional on

the first-stage data, nγð Þ−1=2S2∼N 1−rð Þδ ffiffiffiffiffiffi
γn

p
;1−r

� �
, where S2 ¼

∑n�

i¼rnþ1 Xi−Yið Þ and n* = rn + γ(1 − r)n are the new total sample
size per treatment. Note that under H0:δ = 0, (nγ)−1/2S2 has the
N(0,1− r) distribution regardless of the (data-dependent) choice of γ,
thus Fisher's test statistic

n−1=2 S1 þ γ−1=2S2
� �

ð2Þ

has a N(0,1) distribution under H0. The corresponding test has been
called a variance spending test because 1 − r is the remaining part of
the total variance 1 not spent in the first stage. Denne [9] proposed a
test that also allows data-dependent updates of the total sample size
butmaintains the type I error probability by a seemingly differentmeth-
od. Denne's test chooses a critical value for S2 that maintains the condi-
tional type I error rate Pδ¼0 S1 þ S2Nzα

ffiffiffi
n

p jS1 ¼ s1
� �

. Jennison and
Turnbull [10] showed that this test is actually equivalent to Fisher's
test, which they found to perform poorly in terms of expected sample
size and power in comparison to group-sequential tests. Tsiatis and
Mehta [11] independently came to the same conclusion, attributing
this inefficiency to the use of the non-sufficient “weighted” statistic
(Eq. 2).

Working in terms of the z-statistic that divides a sample sum by its
standard deviation, Proschan and Hunsberger [12] noted that any

non-decreasing function C(z1) with range [0,1] can be used as a condi-
tional type I error function to define a two-stage procedure, as long as
it satisfies

Z ∞

−∞
C z1ð Þϕ z1ð Þdz1 ¼ α; ð3Þ

and suggested certain choices of C(·); we use ϕ and Φ to denote the
standard normal density and distribution function, respectively. Having
observed the first-stage z-statistic Z1, H0:δ = 0 is rejected in favor of
δ N 0 if the second stage z-statistic Z2 satisfies Z2 N Φ−1(1 − C(Z1)).
Condition (3) ensures that the type I error probability of any test of
this form is α. The tests proposed earlier by Bauer and Köhne [13] can
be represented in this framework, as noted by Posch and Bauer [14].
The basic idea underlying these representations dated back to Bauer
[1] who used it to develop sequential adaptive test strategies over a
planned series of separate trials.

Assuming normally distributed outcomes with known variances,
Jennison and Turnbull [15] introduced adaptive group sequential tests
that choose the jth group size and stopping boundary on the basis of
the cumulative sample size nj − 1 and the sample sum Sn j−1 over the
first j − 1 groups, and that are optimal in the sense of minimizing a
weighted average of the expected sample sizes over a collection of pa-
rameter values, subject to prescribed error probabilities at the null and
a given alternative hypothesis. They showed how the corresponding
optimization problem can be solved numerically by using backward
induction algorithms. They also showed in [16] that standard (non-
adaptive) group sequential tests with the first stage chosen approxi-
mately are nearly as efficient as their optimal adaptive tests.

A new approach was developed by Bartroff and Lai [17,18] in the
general framework of multiparameter exponential families. It uses effi-
cient generalized likelihood ratio (GLR) statistics in this framework and
adds a third stage to adjust for the sampling variability of the first-stage
parameter estimates that determine the second-stage sample size. The
possibility of adding a third stage to improve two-stage designs dated
back to Lorden [19]. Whereas Lorden used crude upper bounds for the
type I error probability that are too conservative for practical applica-
tions, Bartroff and Lai overcame this difficulty by using new methods
to compute the type I error probability, and also extended the three-
stage test to multiparameter and multi-armed settings, thus greatly
broadening the scope of these efficient adaptive designs.

2.2. Seamless Phase II/III trials with hypothesis selection at interim

Bretz and his collaborators [20,21] atNovartis have extended Bauer's
seminal ideas in [1] to develop a second generation of adaptive designs
that are of much greater interest to drug development than sample size
re-estimation. Highlighting the need for more efficient and effective
drug development processes to translate the ongoing revolution in
biomedical sciences to breakthroughs in treating diseases, [20] notes
the inefficiency of contemporary Phase III trials that are “stand-alone
confirmatory trials, ignoring information from previous phases,” and
argues for innovation through seamless Phase II/III designs that “aim
at interweaving these (phases) by combining them into one single
study conducted in two stages.” The advantages of these adaptive
seamless designs (ASDs), noted in [20], p. 624, are that they

(i) reduce the time to decide on, plan and implement the next
phase,

(ii) save costs through the combination of evidence across two
studies, and

(iii) get long-term safety data earlier as a direct consequence of
following up the Phase II patients.

The basic idea underlying the ASDs in [20] is to extend to multiple
testing of k hypotheses H0

1, …, H0
k the methods used in [1,13] and [14]
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