

Available online at www.sciencedirect.com

Journal of Medical Hypotheses and Ideas

journal homepage: www.elsevier.com/locate/jmhi

REGULAR ARTICLE

Blocking IRES-mediated translation pathway as a new method to treat Alzheimer's disease

Q.Y. Liu *

College of Bioscience and Biotechnology, Hunan Agricultural University, Changsha 410128, PR China

Received 10 February 2014; revised 11 April 2014; accepted 3 May 2014 Available online 14 May 2014

KEYWORDS

Alzheimer's disease; Amyloid precursor protein; IRES-mediated translation; RNA editing Abstract Scientists theorized that β -amyloid $(A\beta)$ plaques and tau tangles are involved in the development of Alzheimer's disease (AD), and amyloid precursor protein (APP) produces $A\beta$ to trigger the disease process. However, the normal synaptic function of APP itself is not fully understood. Several findings cast APP as a potential key player in learning and memory under normal condition. Nevertheless, the regular operation of APP will be disrupted by abnormal accumulation of $A\beta$ under cellular pathological conditions. Herein, there is a hypothesis that AD could be treated by attenuating APP synthesis during cellular pathophysiological stress. In virtue of a previous study, it was speculated that cells could not decrease APP synthesis via self-protection maybe because APP is synthesized via internal ribosome entry segment (IRES)-mediated translation. Consequently, the blockage of this translation might be a new inoffensive and high-level specificity treatment.

© 2014 Tehran University of Medical Sciences. Published by Elsevier Ltd. All rights reserved.

Introduction

 $A\beta$ and APP

Alzheimer's disease (AD) is a neurodegenerative disorder characterized by the presence of aggregates of β -amyloid (A β) and intraneuronal neurofibrillary tangles (NFTs) with tau protein [1]. Therefore, there are usually two typical pathological hallmarks in AD patient brain: First, A β plaques outside of neurons are produced via the accumulation of A β , and then NFTs inside them are formed via tau protein phosphorylation.

In addition, the NFTs mostly occur after $A\beta$ plaques have developed. It is believed that $A\beta$ plaques ignite the fuse to trigger the disease process. Furthermore, $A\beta$ is derived from amyloid precursor protein (APP) via two proteases, β -secretase and γ -secretase [2]. Notwithstanding, the normal functions of uncleaved APP in the brain are still unknown, a few studies also suggested that full-length APP with nonamyloidogenic pathway as a potential key player in learning and memory through the promotion of synaptic activity, synapse formation, and dendritic spine formation [3–6]. In addition, Ma and colleagues found further that $A\beta$ levels exceeding the

* Tel./fax: +86 731 84673602.

E-mail address: lqy19921002@163.com

58 Q.Y. Liu

normal range may initiate abnormalities in synaptic function [7]. Therefore, there is a premise that a certain amount of $A\beta$ is required for physiological function regulations in the neurons. However, under pathological stress conditions, the increase in $A\beta$ concentration produces pathological effects, including decreased presynaptic neurotransmitter release, reduced postsynaptic responsiveness, long-term potentiation (LTP) impairment, and long-term depression (LTD) facilitation (see Ref. [8] for a recent review). As a result, the concentration of $A\beta$ (APP) must be maintained within a normal physiological range in order to treating AD.

IRES-mediated translation

The majority of mRNAs in eukaryotic cells are translated via the methylguanosine cap at the 5' end of the mRNA with eukaryotic initiation factors (eIFs). In general, many of the eIFs (eIF2α, eIF4GI, eIF4GII, eIF3j) involved in this process are degraded and become less active under a number of pathophysiological stress conditions or apoptosis, thus attenuating protein synthesis [9]. Scientists subsequently found that a number of proteins (e.g., XIAP, c-Myc, and DAP5), involved in cell death, are still synthesized via cap-independent translation during apoptosis [10–12]. The initiation of cap-independent translation involved a complex RNA structural element known as internal ribosome entry segment (IRES) to recruit ribosomes [13–15]. This structural element in the 5'-untranslated region (UTR) plays a pivotal role in cell's relieving and recovery from stress condition as usual. As we know, eIF2α phosphorylation will increase under cell death, but how can the IRES-dependent translation bypass the limitation of protein synthesis such as eIF2α phosphorylation under physiological and pathophysiological stress? With respect to this new challenge, scientists proposed some meaningful hypothesis [16]. On the basis of a few eIF2-independent modes of translation of viral RNAs [17,18], recently. Nehal Thakor and Martin Holcik have theorized that the IRES-mediated translation of X-linked inhibitor of apoptosis protein (XIAP) is more likely to be dependent upon eIF2α during normal growth condition and then switches to eIF5B-dependent mode when eIF2α is phosphorylated under cellular stress. Interestingly, these results cater for previous hypothesis, however, they also noticed that not all cellular IRES operate with an eIF5B-dependent mode [19].

APP and IRES-dependent translation

Salubrinal, an inhibitor of eIF2 α -P dephosphorylation, is used for inducing eIF2 α phosphorylation to promote cell survival under endoplasmic reticulum (ER) stress [20]. Although some groups tried to treat AD by altering the level of eIF2 α phosphorylation using salubrinal [21,22], the results were less effective than kainic acid injury-induced cell death [23] and cerebral stroke [24]. As a result, it is suggested that the short-term treatment of salubrinal, with no alterations in phosphorylated eIF2 α levels, protects against A β neurotoxicity through inhibition of the NF- κ B pathway rather than through inhibition of ER stress. However, after long-term incubation (1 week) with salubrinal, the eIF2 α phosphorylation levels were markedly higher following further repression of global translation and reduction of synaptic proteins that resulted in severe neuronal loss and significantly accelerating disease. Herein, we can

conclude that $A\beta$ -induced cell death has little correlation with eIF2 α phosphorylation level. In addition, Leslie A. Krushel and coworkers found that APP could also be synthesized through IRES-mediated translation. Besides, they suggested that the APP 5'-leader consists three regions including 5'50 nt, the internal 44 nt and 3'53 nt, furthermore, the region of 5'50 nt is sufficient to internally initiate translation (i.e., this region is sufficient to exhibit IRES activity, although total IRES activity was reduced by approximately half of the full-length APP leader) [25]. Given all that, I suggested that this kind of translation manner via eIF2 α -independent mode can make APP synthesis resistant to the limitation of cell respond phosphorylating subunits of eIFs under ER stress or other pathophysiological stress.

Proposal and evaluation of hypothesis

Hypothesis

In this article, I proposed two methods as a potential treatment. A: RNA editing on 50 nt of the APP 5'-UTR [25]. B: Editing/removing the IERS element within longer 5'-UTR [26].

Evaluation of hypothesis

First, there is a significant necessity for research operation mechanism of IERS-mediated translation of APP via avidinbiotin RNA affinity chromatography and additional biochemical, molecular biological, and cell culture methods to ensure the validity of the eIF2α-independent mode of APP synthesis [19]. Subsequently, the effects of the two methods should be tested by identifying apoptotic neurons and the viability of the neurons. In order to verify successfully, the appropriate infected cell mode and three experimental groups (A, B, A + B) should be set. The two methods also should be tested to know whether they influence traditional translation. In practice, method B should not be considered unless method A is ineffectual. The intrinsic mechanisms of hypothesis: Under normal condition, if hypothesis make good, this kind of treatment will not obstruct the normal levels synthesis of APP to keep APP operate normal functions because the translations of APP are conducted via traditional manner predominantly this moment. On the other hand, under pathological stress conditions, APP synthesis can be performed neither traditional translation (eIF2α-dependent manner) due to eIFs phosphorylation and cleavage nor IRES-translation (eIF2α-independent manner) because of lack IRES activity after treatment. In this way, cell can attenuate synthesis of APP and then $A\beta$ to prevent A β concentration from exceeding the normal range (Fig. 1).

Discussion

The hypothesis in this article is a treatment method for AD by controlling the IRES-mediated translation of APP intrinsically. In virtue of this rule, a few RNA-binding proteins repressing IRES activity as potential treatments still lack stability and reliability [27–29]. In addition, Martin Holcik suggested that initiation complex formed on the XIAP IRES RNA is indeed translation competent. Therefore, I also try to explore targeting translation initiation factors such as eIF5B

Download English Version:

https://daneshyari.com/en/article/3483003

Download Persian Version:

https://daneshyari.com/article/3483003

<u>Daneshyari.com</u>