

ORIGINAL ARTICLE

Influence of different implant materials on the primary stability of orthodontic mini-implants

Chin-Yun Pan^a, Szu-Ting Chou^a, Yu-Chuan Tseng^{a,b}, Yi-Hsin Yang^c, Chao-Yi Wu^b, Ting-Hsun Lan^d, Pao-Hsin Liu^e, Hong-Po Chang^{a,b,*}

^a Department of Orthodontics, Dental Clinics, Kaohsiung Medical University Hospital, Kaohsiung, Taiwan ^b Faculty of Dentistry, College of Dental Medicine, Kaohsiung Medical University, Kaohsiung, Taiwan ^c Division of Statistical Analysis, Department of Medical Research, Kaohsiung Medical University Hospital, Kaohsiung, Taiwan

^d Department of Prosthodontics, Dental Clinics, Kaohsiung Medical University Hospital, Kaohsiung, Taiwan ^e Department of Biomedical Engineering, I-Shou University, Kaohsiung, Taiwan

Received 7 November 2011; accepted 21 December 2011 Available online 28 July 2012

KEYWORDS Orthodontic miniimplants; Primary stability; Resonance frequency analysis; Stainless steel; Titanium alloy Abstract This study evaluates the influence of different implant materials on the primary stability of orthodontic mini-implants by measuring the resonance frequency. Twenty-five orthodontic mini-implants with a diameter of 2 mm were used. The first group contained stainless steel mini-implants with two different lengths (10 and 12 mm). The second group included titanium alloy mini-implants with two different lengths (10 and 12 mm) and stainless steel mini-implants 10 mm in length. The mini-implants were inserted into artificial bones with a 2-mm-thick cortical layer and 40 or 20 lb/ft³ trabecular bone density at insertion depths of 2, 4, and 6 mm. The resonance frequency of the mini-implants in the artificial bone was detected with the Implomates[®] device. Data were analyzed by two-way analysis of variance followed by the Tukey honestly significant difference test ($\alpha = 0.05$). Greater insertion depth resulted in higher resonance frequency, whereas longer mini-implants showed lower resonance frequency values. However, resonance frequency was not influenced by the implant materials titanium alloy or stainless steel. Therefore, the primary stability of a mini-implant is influenced by insertion depth and not by implant material. Insertion depth is extremely important for primary implant stability and is critical for treatment success. Copyright © 2012, Elsevier Taiwan LLC. All rights reserved.

E-mail address: hopoch@kmu.edu.tw (H.-P. Chang).

1607-551X/\$36 Copyright @ 2012, Elsevier Taiwan LLC. All rights reserved. doi:10.1016/j.kjms.2012.04.037

^{*} Corresponding author. Department of Orthodontics, Kaohsiung Medical University Hospital, 100 Tzyou 1st Road, Kaohsiung 80756, Taiwan.

Introduction

Titanium alloy is currently widely used in orthodontic miniimplants. The demand for titanium has increased because of its use in various industrial fields, and it is becoming more expensive [1]. Thus, in some countries, stainless steel mini-implants — rather than titanium alloy miniimplants — are more commonly used.

The requirement for orthodontic treatment modalities that provide maximal anchorage control and minimal patient compliance has led to the application of implantassisted orthodontics [2]. Mini-implants allow orthodontists to achieve treatment goals that were previously considered extremely difficult, if not impossible. The clinical success rate of mini-implants in implant orthodontics exceeds 80% [3], a figure that has improved considerably from the past, but which remains imperfect.

Mini-implant stability has traditionally been difficult to evaluate and is often reduced to a simple assessment of mobility. Dental implant stability can be measured using a resonance frequency analyzer [4]. In 2000, the Osstell[®] device (Integration Diagnostics AB, Göteborg, Sweden) was introduced to determine the status of dental implants. Another type of resonance frequency analysis has proven useful for detecting dental implant stability in a series of *in vivo* and *in vitro* experiments [5–7]. This study used a novel resonance frequency detection device (Implomates[®]; BioTech One Inc., Taipei, Taiwan) to monitor the stability of orthodontic mini-implants.

The present study evaluates the influence of different implant materials on the primary stability of orthodontic mini-implants by measuring the resonance frequency.

Δ

В

Materials and methods

Orthodontic mini-implants

Twenty-five orthodontic mini-implants (2.0 mm in diameter; Bio-Ray, Syntec Scientific Corp., Taipei, Taiwan) were used (Fig. 1 and Table 1). The first group contained stainless steel mini-implants with two different lengths (10 and 12 mm). The second group included titanium alloy miniimplants with two different lengths (10 and 12 mm) and stainless steel mini-implants of 10 mm length. This study used five of each type.

Bone specimens

Mechanical test blocks of artificial bone (Sawbones[®]; Pacific Research Laboratories Inc., Vashon Island, WA, USA) were selected (Table 2) as a jaw bone equivalent. The mean bone mineral density is 0.55 g/cm³ for the anterior maxilla and 0.31 g/cm³ for the posterior maxilla [8]. Polyurethane foam blocks with a bone density of 40 lb/ft³ (0.64 g/cm³) and 20 lb/ft³ (0.32 g/cm³) were chosen for the experimental groups. The average cortical bone thickness ranges from 1.09 to 2.12 mm in the maxilla and from 1.59 to 3.03 mm in the mandible [9]. Sheets with a cortical layer thickness of 2 mm were selected.

Pilot hole preparation and mini-implant insertion

Two pilot holes were prepared, one without a pilot hole and one with a 1-mm pilot hole diameter. The 1-mm-diameter

D

С

Figure 1. (A) Titanium alloy mini-implant (diameter, 2 mm; length, 12 mm). (B) Stainless steel mini-implant (diameter, 2 mm; length, 12 mm). (C) Titanium alloy mini-implant (diameter, 2 mm; length, 10 mm). (D) Stainless steel mini-implant (diameter, 2 mm; length, 10 mm).

Download English Version:

https://daneshyari.com/en/article/3485682

Download Persian Version:

https://daneshyari.com/article/3485682

Daneshyari.com