
An introduction to object-oriented programming
with a didactic microworld: objectKarel

Stelios Xinogalos a, Maya Satratzemi a,*, Vassilios Dagdilelis b

a Department of Applied Informatics, University of Macedonia, 156, Egnatia str., P.O. Box 1591,

54006 Thessaloniki, Greece
b Department of Educational and Social Policy, University of Macedonia, 156, Egnatia str., P.O. Box 1591,

54006 Thessaloniki, Greece

Received 27 May 2004; accepted 15 September 2004

Abstract

The objects-first strategy to teaching programming has prevailed over the imperative-first and function-

al-first strategies during the last decade. However, the objects-first strategy has created added difficulties to
both the teaching and learning of programming. In an attempt to confront these difficulties and support the

objects-first strategy we developed a novel programming environment, objectKarel, which uses the language

Karel++. The design of objectKarel was based on the results of the extended research that has been carried

out about novice programmers. What differentiates it from analogous environments is the fact that it com-

bines features that have been used solely in them: incorporated e-lessons and hands-on activities; an easy to

use structure editor for developing/editing programs; program animation; explanatory visualization; highly

informative and friendly error messages; recordability. In this paper, we present the didactic rationale that

dictated the design of objectKarel and the features of the environment, including the e-lessons. In addition,
we present the results from the use of objectKarel in the classroom and the results of the students� assess-

ment of the environment.

� 2004 Published by Elsevier Ltd.

Keywords: Programming and programming languages; Teaching/learning strategies; Pedagogical issues

0360-1315/$ - see front matter � 2004 Published by Elsevier Ltd.

doi:10.1016/j.compedu.2004.09.005

* Corresponding author.

E-mail addresses: stelios@uom.gr (S. Xinogalos), maya@uom.gr (M. Satratzemi), dagdil@uom.gr (V. Dagdilelis).

www.elsevier.com/locate/compedu

Computers & Education 47 (2006) 148–171

mailto:stelios@uom.gr 
mailto:maya@uom.gr 
mailto:dagdil@uom.gr 


1. Introduction

The three basic strategies for an initial approach to teach programming are: imperative-first,
functional-first, and objects-first. The first two strategies have been used for a fairly long period
of time, whereas the third one appears to have attracted interest in the last few years. The func-
tional-first strategy initially places emphasis on functions leaving the presentation of state for la-
ter, whereas in the imperative-first strategy the emphasis is first given to the state and then the
concept of functions is presented.

As far as the objects-first strategy is concerned, according to the ACM curricula report, ‘‘Ob-
jects-first emphasizes the principles of object-oriented programming and design from the very
beginning. The objects-first strategy begins immediately with the notion of objects and inheritance
and then goes on to introduce more traditional structures’’ (Chang et al., 2001, p. 30). This means
that from the very beginning both the state and functions must be presented.

As the authors of the ACM curricula report acknowledge, the objects-first strategy creates
added difficulties to both the teaching and learning of programming. The classic methodology
for the teaching of programming began with small and simple programs to be followed by
more complex and larger-sized ones. This approach gave novice programmers time to assimi-
late and to gradually build up new knowledge relevant to the development of programs. How-
ever, when using the objects-first strategy, students are required to work with objects from the
very beginning. This means that from the very beginning they will have to be taught about
objects, classes, methods, constructors, inheritance and at the same time they will have to
be taught the concepts of types, variables, values, as well as having to learn the syntax of
the language which, as has been shown in the research, comprises one of the biggest sources
of difficulties for novice programmers.

In an attempt to support the objects-first strategy various educational software tools have been
developed, such as: BlueJ (Kolling, Quig, Patterson, & Rosenberg, 2003), Karel J. Robot (Bergin,
Stehlik, Roberts, Pattis, & Karel, 2004), Jeroo (Sanders & Dorn, 2003), JKarelRobot (Buck &
Stucki, 2000), and Alice (Cooper, Dann, & Paush, 2000). Certain of these tools, like Karel J. Ro-
bot, Jeroo, JKarelRobot, and Alice, constitute programming microworlds which are based on a
physical metaphor, while, BlueJ is an integrated programming environment whose main feature is
that the user begins with a set of predetermined classes and can create objects and call on methods
for those objects in order to examine their behavior.

In our attempt to support the objects-first approach we developed a novel programming envi-
ronment objectKarel (Xinogalos, 2002), which uses the language Karel++, as defined by Bergin,
Stehlik, Roberts, and Pattis (1997).

ObjectKarel consists of a programming microworld and thus belongs to the first category men-
tioned above. However, objectKarel incorporates certain characteristics, which do not exist in
other software of the same category but which facilitate both the teaching and learning of
OOP. The two basic characteristic components of objectKarel are the following:

� It is a programming environment, which helps the student to develop programs easily.
Program development is accomplished with the help of a structure editor where by select-
ing the appropriate commands from menus the development/editing of a program takes
place.

S. Xinogalos et al. / Computers & Education 47 (2006) 148–171 149



Download	English	Version:

https://daneshyari.com/en/article/349998

Download	Persian	Version:

https://daneshyari.com/article/349998

Daneshyari.com

https://daneshyari.com/en/article/349998
https://daneshyari.com/article/349998
https://daneshyari.com/

