
Process-mining enabled feedback: “Tell me what I did wrong” vs. “tell
me how to do it right”

Gayane Sedrakyan*, Jochen De Weerdt, Monique Snoeck
K.U.Leuven, Faculty of Business and Economics, Department of Decision Sciences and Information Management, Research Center for Management
Informatics (LIRIS), Naamsestraat 69, B-3000, Leuven, Belgium

a r t i c l e i n f o

Article history:
Received 25 June 2015
Received in revised form
16 December 2015
Accepted 17 December 2015
Available online 31 December 2015

Keywords:
Teaching/learning modeling
Domain modeling
Conceptual modeling
Process-oriented feedback
Modeling patterns
Information systems education
Process mining
Learning analytics

a b s t r a c t

Fast advancement of technology has led to an increased interest for using information technology to
provide feedback based on learning behavior observations. This work outlines a novel approach for
analyzing behavioral learner data through the application of process mining techniques specifically
targeting a complex problem solving process. We realize this in the context of one particular learning
case, namely, domain modeling. This work extends our previous research on process-mining analysis of
domain modeling behavior of novices by elaborating with new insights from a replication study
enhanced with an extra observation on how novices verify/validate models. The findings include a set of
typical modeling and validation patterns that can be used to improve teaching guidance for domain
modeling courses. From a scientific viewpoint, the results contribute to improving our knowledge on the
cognitive aspects of problem-solving behavior of novices in the area of domain modeling, specifically
regarding process-oriented feedback as opposed to traditional outcome feedback (is a solution correct?
Why (not)?) usually applied in this type of courses. Ultimately, the outcomes of the work can be
inspirational outside of the area of domain modeling as learning event data is becoming readily available
through virtual learning environments and other information systems.

© 2015 Elsevier Ltd. All rights reserved.

1. Introduction

In the modern ICT-driven world the quality of information sys-
tems is critical but even more importantly, the value of information
systems is largely dependent on their alignment with business
strategy and operations. Therefore, in enterprise information sys-
tems engineering, enterprise modeling (also sometimes coined as
business modeling) is an important step next to (or even prior to)
developing an application and technological architecture (TOGAF,
2015).

Typically, an enterprisemodel addresses different dimensions of
the enterprise such as the “what”, “how”, “who”, “when”, “where”
and “why” (Bernaert, Poels, Snoeck, & De Backer, 2014; Zachman,
1987). These aspects are captured through different kinds of
models such as goal models (capturing the “why”), organizational
charts (capturing the “who”), conceptual data models capturing
business objects and their relations (“what”), and business

processes models (capturing the “how”, related to “who” and
“what”). Each of these models captures a particular “view” of the
enterprise covering one ormore aspects and abstracting away other
aspects. While working with different views is a powerful mecha-
nism to master complexity, obviously, those views are not totally
independent, but need to present an integrated view of an enter-
prise and should therefore be consistent with each other. Enter-
prise modeling is therefore a complex problem solving process, and
teaching it requires a careful scaffolding of learning tasks,
addressing the modeling of individual aspects first, but ultimately
addressing the capability of developing an integrated model con-
sisting of several mutually consistent views.

While different aspects of the enterprise can be described
through natural language, it is common practice to capture the
different views through the creation of formal (graphical) models
becausemodels enable quality control at a level impossible to reach
with requirements formulated in natural language (Sikora, Bastian,
& Pohl, 2011). Models are represented as diagrams, using specific
modeling languages, such as BPMN for business process diagrams,
and UML for class diagrams. A particular feature of UML is that this
language is based on the principles of object orientation, hence

* Corresponding author.
E-mail addresses: Gayane.Sedrakyan@kuleuven.be (G. Sedrakyan), Jochen.

DeWeerdt@kuleuven.be (J. De Weerdt), Monique.Snoeck@kuleuven.be (M. Snoeck).

Contents lists available at ScienceDirect

Computers in Human Behavior

journal homepage: www.elsevier .com/locate/comphumbeh

http://dx.doi.org/10.1016/j.chb.2015.12.040
0747-5632/© 2015 Elsevier Ltd. All rights reserved.

Computers in Human Behavior 57 (2016) 352e376

Delta:1_given name
Delta:1_surname
Delta:1_given name
mailto:Gayane.Sedrakyan@kuleuven.be
mailto:Jochen.DeWeerdt@kuleuven.be
mailto:Jochen.DeWeerdt@kuleuven.be
mailto:Monique.Snoeck@kuleuven.be
http://crossmark.crossref.org/dialog/?doi=10.1016/j.chb.2015.12.040&domain=pdf
www.sciencedirect.com/science/journal/07475632
www.elsevier.com/locate/comphumbeh
http://dx.doi.org/10.1016/j.chb.2015.12.040
http://dx.doi.org/10.1016/j.chb.2015.12.040
http://dx.doi.org/10.1016/j.chb.2015.12.040


allowing capturing part of the “how” aspects related to behavior of
business objects. When using UML for describing business objects,
their relationships and their behavior, one therefore speaks about
“domain modeling”. As an example, a sales company can be
described through a collection of business processes drawn in
BPMN, capturing the workflows associated to registering new or-
ders, issuing invoices, shipping goods to customers, handling
complaints and so on. An object-oriented domain model will be
described through several sub-views. The UML class diagram (the
structural view) will capture business objects (such as customer,
order, invoice, product), and their associations (e.g. each order
belongs to exactly one customer; a customer can have zero to many
outstanding orders). UML statecharts capture the potential states a
business objects can be in (a customer may be blacklisted or not; an
order may be invoiced, paid, shipped, …; a product may be avail-
able, out-of-stock, …) and which actions are allowed in particular
states or not (e.g. adding products to an already paid order is not
allowed), and how actions may cause transition to a next state (e.g.
“pay” causes the transition to the state “paid”). Finally, an interac-
tion model will capture the required coordination across business
objects. For example, adding a product to an order requires
checking the state of an order (is the order still modifiable ?), the
state of the product (is the product available ?) and potentially even
the state of the customer (is the customer not blacklisted ?). If
adding the product is permitted, then both the order, and the stock
level of the product need to be updated. The statecharts and
interaction model together form the behavioral view.

Teaching modeling skills to novice business analysts is a chal-
lenging task considering that system analysis is by nature an
inexact skill and the tacit knowledge the experts gain over time is
difficult to transfer to novices. As stated by (Schenk, Vitalari, &
Davis, 1998), “in their early careers junior system analysts pro-
duce incomplete, inaccurate, ambiguous, and/or incorrect infor-
mation requirements”. Translating these requirements into correct
models consisting of different partial views that need to be
consistent with each other, adds yet another layer of difficulty.

The adoption of UML as a modeling language has become very
prominent since the introduction of the Model Driven Architecture
(MDA) framework and the Model Driven Engineering (MDE)
approach to software development (B�ezivin, 2006). MDA and MDE
recognize that models are the foundation of software system
development by focusing on automated code generation from
models and hence shifting the focus of software quality assurance
from system implementation (software testing) towards system
modeling (model verification and validation).

Despite the dominance of UML there is a certain degree of dif-
ficulty in understanding a system represented by means of UML
diagrams (Bavota et al., 2011; Otero & Dolado, 2004; Siau & Cao,
2001; Siau, Erickson, & Lee, 2005). Previous research has indi-
cated several reasons: among which (1) the level of structural
complexity of UML exceeding the limits of humanworkingmemory
(cognitive load) in terms of the ability for effective information
processing (Cruz-Lemus, Genero, & Piattini, 2008; Cruz-Lemus,
Maes, Genero, Poels, & Piattini, 2010; Erickson & Siau, 2007; Wil-
mont, Hengeveld, Barendsen, & Hoppenbrouwers, 2013); and (2)
lack of comprehension methodologies (Erickson & Siau, 2007) and,
in particular, its impreciseness about the combination of interac-
tive, structural and behavioral aspects together in a single model
(Gustas, 2010). Furthermore, (3) it is not easy to find relevant
subsets suitable for a modeling goal. The (4) “noisiness” of UML
with variety of concepts can result in models that use the misused
language concepts in a way not intended for the modeling domain
(Buckl, Matthes, & Schweda, 2010). Finally, (5) there is a lack of
validation guidance and tool support for model testing (Shanks,
Tansley, & Weber, 2003).

In a teaching context, model comprehension difficulties are
additionally associated with the insufficient level of experience, i.e.
domain knowledge, of novices and as a result their limited cogni-
tive resources to identify relevant triggers for model verification
(Bradley, Paul, & Seeman, 2006; Damassa & Sitko, 2010; Schenk
et al., 1998). According to complexity analysis by Siau and Cao,
2001 UML class diagram ranks the highest in complexity among
the structural diagrams followed by statecharts among the dynamic
diagrams (Carbone & Santucci, 2002; Cruz-Lemus, Genero, Manso,
Morasca,& Piattini, 2009; Cruz-Lemus, Genero, Morasca,& Piattini,
2007; Genero, Miranda, & Piattini, 2003) because of their high
cognitive and structural complexity (Cruz-Lemus et al., 2008, 2010).

The work presented in this paper relies on the teaching of en-
terprise modeling, according to the method MERODE,1 an Enter-
prise Information Systems engineering methodology that has been
developed by the Management Informatics research group at the
faculty of Business and Economics, KU Leuven (Snoeck, 2014). In
MERODE an enterprise model consists of a collection of business
processmodels (making use of BPMN asmodeling language) and an
object oriented domain model (making use of the UML). To alle-
viate some of the above-mentioned problems related to UML,
MERODE uses simplified versions of the UML class diagram and
statecharts. In a Delphi2 study by Erickson and Siau, 2007 identi-
fying the kernel of “essential” UML (i.e. diagrams that are highly
used) class diagram and statecharts are found to have the highest
usability ranks by practitioners and educators from software in-
dustry and academic field with the relative importance rate of
100%. Furthermore these are also among the top used diagrams
present in the context of educational material such as books, tools,
courses and tutorials (with percentages of 100% (class diagram) and
over 96% (statecharts) (Reggio, Leotta, Ricca, & Clerissi, 2013) also
being in the subset of diagrams that provide a support for con-
ceptual modeling goals (Embley & Thalheim, 2012). Furthermore,
to maintain the high abstraction level required for enterprise
modeling, the interaction model has been replaced by a CRUD-
table, a technique borrowed from Information Engineering
(Martin, 1990). As a result, a MERODE domain model uses three
simplified sub-views: an existence dependency graph (EDG)
describing business objects and their associations through a
simplified UML class diagram, 2. finite state machines (FSMs), a
simplified form of UML statecharts, to capture the individual
behavior of business objects, and 3. a CRUD-table to capture busi-
ness object interactions. For the given example, the different
models would look like in Fig. 1. The method is supported by a tool
JMermaid.3 While this tool offers some built-in features for basic
consistency checks (Snoeck, Michiels, & Dedene, 2003), the
modeler needs to actively cross-validate the different views to
ensure an integrated perspective on the system-to-be.

While MERODE contributes to modeling quality through
simplification and intelligent tool support, this doesn't guarantee
the quality of the outcome of the modeling process: for a same
modeling task, large variations in quality of the obtained models
can still be observed. Recently new research domain emerged that
investigates the process of process modeling aiming at under-
standing of how humansmodel and if and howmodeling styles can
affect the quality of the modeling process outcome. Those studies
are however limited to the process of business process modeling. So
far, no research was found that observes a modeling process
involving conceptual data modeling, object oriented domain

1 Attempt to reach a reliable consensus by incorporating opposing views from
experts in specialized areas.

2 http://merode.econ.kuleuven.ac.be/mermaid.aspx.
3 Disco is a commercial tool developed by Fluxicon: http://fluxicon.com/disco/.

G. Sedrakyan et al. / Computers in Human Behavior 57 (2016) 352e376 353

http://merode.econ.kuleuven.ac.be/mermaid.aspx
http://fluxicon.com/disco/


Download English Version:

https://daneshyari.com/en/article/350246

Download Persian Version:

https://daneshyari.com/article/350246

Daneshyari.com

https://daneshyari.com/en/article/350246
https://daneshyari.com/article/350246
https://daneshyari.com

