Computers in Human Behavior 41 (2014) 51-61

Contents lists available at ScienceDirect

T COMPUTERS IN
HUMAN BEHAVIOR

Computers in Human Behavior

journal homepage: www.elsevier.com/locate/comphumbeh

Review

Review on teaching and learning of computational thinking through @CmMark
programming: What is next for K-127?

Sze Yee Lye ™, Joyce Hwee Ling Koh

National Institute of Education, Nanyang Technological University, Singapore, 1 Nanyang Walk, Singapore 637616, Singapore

ARTICLE INFO ABSTRACT
Article history: Programming is more than just coding, for, it exposes students to computational thinking which involves
Available online 30 September 2014 problem-solving using computer science concepts like abstraction and decomposition. Even for non-com-
puting majors, computational thinking is applicable and useful in their daily lives. The three dimensions
Keywords: of computational thinking are computational concepts, computational practices and computational per-
Emgtfal:“ming spectives. In recent years, the availability of free and user-friendly programming languages has fuelled
cratc

the interest of researchers and educators to explore how computational thinking can be introduced in
K-12 contexts. Through an analysis of 27 available intervention studies, this paper presents the current
trends of empirical research in the development of computational thinking through programming and
suggests possible research and instructional implications. From the review, we propose that more K-12
intervention studies centering on computational practices and computational perspectives could be con-
ducted in the regular classroom. To better examine these two dimensions, students could be asked to ver-
balize their thought process using think aloud protocol while programming and their on-screen
programming activity could be captured and analyzed. Predetermined categories based on both past
and recent programming studies could be used to guide the analysis of the qualitative data. As for the
instructional implication, it is proposed that a constructionism-based problem-solving learning environ-
ment, with information processing, scaffolding and reflection activities, could be designed to foster com-
putational practices and computational perspectives.

Computer science education
K-12
Computational thinking

© 2014 Elsevier Ltd. All rights reserved.

Contents

B R U o e L ot o) 4 U P 52
2. Computational thinKing. o it it e et e et e e e e e e 52
D728 DR B 1< o () o PPt 52

2.2. Computational thinking through K-12 programming tOOISttt et e et et et ettt ettt iaenns 53

I T 1T ol o 5 U 001 53
4, SeArCh PrOCEAUIES . . .\ ittt ittt ettt ettt e e et e e et et e e et e e e e e e e e 53
D FIAINGS .ot ottt e e e e e 54
5.1. Research question 1: How has programming been incorporated into K-12 curricula? i, 54

5.2. Research question 2: What are the reported outcomes in terms student performance in the computational thinking dimensions? 54
5.2.1. ComPULAtiONAl COMEEPES. .« o v vttt ittt et e et e et e et et et e e e et e e ettt e e e e e e 54

5.2.2. CompPULational PraCtiCes. . . . oo vt ittt ettt et e e e et e et e e e e e e e e e e e 56

5.2.3. ComPULatioNal PeISPECHIVES. . o vttt ittt ettt ettt e e e e e e e e e e e e 56

5.3. Research question 3: What intervention approaches are being used to foster computational thinking? 56
5.3.1. Reinforcement of cOmMpuUtational COMCEPLSottt ittt ettt et e e e e ettt et et ettt et e 56

5320 RefleCHION . ..ottt e e e e e e e e e e e e 57

5.3.3. INfOrmation PrOCESSINE.ottt ittt ettt et e e e e e e e e e e e e e e e e 57

5.3.4. Constructing programs with scaffold e e 57

* Corresponding author.
E-mail addresses: lye.szeyee@gmail.com (S.Y. Lye), joyce.koh@nie.edu.sg (J.H.L. Koh).

http://dx.doi.org/10.1016/j.chb.2014.09.012
0747-5632/© 2014 Elsevier Ltd. All rights reserved.

http://crossmark.crossref.org/dialog/?doi=10.1016/j.chb.2014.09.012&domain=pdf
http://dx.doi.org/10.1016/j.chb.2014.09.012
mailto:lye.szeyee@gmail.com
mailto:joyce.koh@nie.edu.sg
http://dx.doi.org/10.1016/j.chb.2014.09.012
http://www.sciencedirect.com/science/journal/07475632
http://www.elsevier.com/locate/comphumbeh

52 S.Y. Lye, J.H.L. Koh/Computers in Human Behavior 41 (2014) 51-61

6. Research iMPLICAtIONSottt ettt et et et et e e et e et e e e e e e e e e e e e e 57
6.1. Explore more classroom-based iNteIVENTIONSottt et e e ettt e e e e e et 57
6.2. Explore more studies in computational practices and computational perspectivesuiiii i 58
6.3. Examining the ProgrammiNg PIOCESS e vttt et et e e e et et et e e et e e et et e et et et e e e e et et et ettt 58
6.4. Analyzing qUAlitative datattt e e e e e e e e e 58
7. Instructional implications fOr K-T2. ot et e et e e e e e e e 58
7.0, AUthentic ProbDIem e e e e e e e e e e e e 59
7.2. Information ProCessing aCtiVitiesottt ettt ettt e e e e e e e e e e 59
7.3, SCAffOlAINg PIrOCESS . . oottt ettt ettt e e e e e e e e e e 59
T4, RefleCHiON. . . .o e e e 59
ST €)3 e 11 T) o PP 59
0 2 (S 1 Lo PP 60

1. Introduction

Programming for K-12 can be traced to the 1960s when Logo
programming was first introduced as a potential framework for
teaching mathematics (Feurzeig & Papert, 2011). In Logo, the stu-
dents moves the turtle (arrow) on the screen by issuing commands
like FD 100 (forward 100). In his seminal book “Mindstorms: Chil-
dren, computers and powerful ideas”, Papert (1980) advocated the
use of the discovery constructionist mode for learning Logo. Never-
theless, Logo did not catch on in mainstream schools in the 1980s,
possibly because of the incompatibility between its discovery-
enabled approach and the more conventional behaviourist school
culture back then (Agalianos, Noss, & Whitty, 2001). Papert
(1980) claimed that the Logo programming experience could
develop powerful intellectual thinking skills among children. Con-
trary to his claim, empirical studies of Logo programming did not
find conclusive evidence of it improving the thinking skills of chil-
dren (Kurland, Pea, Clement, & Mawby, 1986; Pea, 1983).

After Logo, the use of programming to teach thinking skills in K-
12 was not extensively reported. However, in the recent years,
there has been renewed interest in introducing programming to
K-12 students (Grover & Pea, 2013; Kafai & Burke, 2013). This is
fuelled by the availability of easy-to-use visual programming lan-
guages such as Scratch (Burke, 2012; Lee, 2010), Toontalk (Kahn,
Sendova, Sacristan, & Noss, 2011), Stagecast Creator (Denner,
Werner, & Ortiz, 2012) and Alice (Graczynska, 2010). Many of these
new programming languages such as Scratch and Alice have been
modelled after aspects of Logo (Utting, Cooper, Kolling, Maloney,
& Resnick, 2010).

During programming, students are exposed to computational
thinking, a term popularized by Wing (2006). It involves the use
of computer science concepts such as abstraction, debugging,
remixing and iteration to solve problems (Brennan & Resnick,
2012; loannidou, Bennett, Repenning, Koh, & Basawapatna, 2011;
Wing, 2008). This form of thinking can be considered to be funda-
mental for K-12 students because it requires “thinking at multiple
abstractions” (Wing, 2006, p. 35). More importantly, computa-
tional thinking is in line with many aspects of 21st century compe-
tencies such as creativity, critical thinking, and problem- solving
(Ananiadou & Claro, 2009; Binkley et al., 2012). Thus, it is not sur-
prising that many educators assert that programming is important
for K-12 students in this era (Kafai & Burke, 2013; Margolis, Goode,
& Bernier, 2011; Resnick et al., 2009). This revived interest in pro-
gramming for K-12 settings suggests the need to consider how it
can be better related to the kinds of educational outcomes that it
can potentially foster. Some of the outcomes suggested by
researchers are the ability to think more systematically (Kafai &
Burke, 2013) and the development of mathematical and scientific
expertise (Sengupta, Kinnebrew, Basu, Biswas, & Clark, 2013).
Yet, in the current literature, there is a dearth of papers that
explore computational thinking through programming in K-12
contexts (Grover & Pea, 2013) as these programming studies are

more often examined for tertiary students undertaking computer
science courses (e.g., Katai & Toth, 2010; Moreno, 2012). Therefore,
in this paper, we attempt to examine published empirical studies
involving students in both K-12 and higher education contexts so
as to derive insights on computational thinking through program-
ming for K-12 curriculum.

2. Computational thinking
2.1. Definition

The term computational thinking is made popular by Wing
(2006). In her seminal article on computational thinking, she
argued that computational thinking “represents a universally
applicable attitude and skill set everyone, not just computer scien-
tists, would be eager to learn and use” (p. 33). Since then, compu-
tational thinking has gained traction in the K-12 context in the
USA. However, the definition of computational thinking still
remains contested as no dominant discourse reigns (Barr &
Stephenson, 2011; Brennan & Resnick, 2012; Grover & Pea,
2013). For example, the International Society for Technology in
Education (ISTE) views computational thinking as algorithmic
thinking with automation tools and data representation with the
use of simulation. On the other hand, the National Research Coun-
cil (NRC) recommends mathematics and computational thinking to
be one of the eight essential practices for the scientific and engi-
neering dimension outlined in the “Framework for K-12 Science
Education” (NRC, 2012). In this framework, mathematics and com-
putational thinking involves the use of computer tools to represent
physical variables and the relationships among them.

For both ISTE and NRC, students may be considered to be exhib-
iting computational thinking even though they are not creating
with technology tools. Conversely, programming involves students
exhibiting computational thinking through the construction of
artifacts (Kafai & Burke, 2013; Resnick et al., 2009). Thus, the gen-
eral definitions on computational thinking suggested by ISTE and
NRC may not be suited for programming. Hence, in this review
on computational thinking through programming for K-12 stu-
dents, we are using the framework proposed for Scratch by
Brennan and Resnick (2012). Scratch is a popular programming
language used in K-12 settings (e.g., Baytak & Land, 2011; Kafai,
Fields, & Burke, 2010; Tangney, Oldham, Conneely, Barrett, &
Lawlor, 2010; Theodorou & Kordaki, 2010). With respect to Scratch,
Brennan and Resnick (2012) proposed three dimensions of compu-
tational thinking: computational concepts, computational prac-
tices, and computational perspectives. Table 1 summarizes the
key ideas on these three dimensions. These dimensions are appro-
priate for understanding how K-12 students approach program-
ming as they are also in line with the Logo programming
language knowledge proposed by Mayer (1992). This includes
the syntactic, semantic, schematic knowledge (computational

Download English Version:

https://daneshyari.com/en/article/350368

Download Persian Version:

https://daneshyari.com/article/350368

Daneshyari.com

https://daneshyari.com/en/article/350368
https://daneshyari.com/article/350368
https://daneshyari.com

