
Assessment frequency in introductory computer programming
disciplines

Miguel A. Brito ⇑, Filipe de Sá-Soares 1

Department of Information Systems, Centro Algoritmi, School of Engineering, University of Minho, Campus de Azurém, 4800-058 Guimarães, Portugal

a r t i c l e i n f o

Article history:
Available online 19 August 2013

Keywords:
Assessment frequency
Computer programming
Constructivism
Learning
Novice students
Programming education

a b s t r a c t

Introductory computer programming disciplines commonly show a significant failure rate.
Although several reasons have been advanced for this state of affairs, we argue that for a beginner stu-

dent it is hard to understand the difference between know-about disciplines and know-how-to-do-it dis-
ciplines, such as computer programming. This leads to failure because when students understand they
are not able to solve a programming problem it is usually too late to catch all the time meanwhile lost.

In order to make students critically analyse their progress, instructors have to provide them with real-
istic indicators of their performance.

To achieve this awareness and to trigger corrective actions in a timely manner there is a need to
increase assessment frequency. This paper discusses how this can be done, analyses benefits of the pro-
posed approach and presents data on the effects of changes in assessment frequency for a university first
year course in fundamentals of computer programming.

� 2013 Elsevier Ltd. All rights reserved.

1. Introduction – reasons for failure

The literature identifies several reasons for students failure
when learning to program (Robins, Rountree, & Rountree, 2003),
with some addressing the curriculum, others focusing on method-
ologies (Cook, 2008), on resources, or on the best first program-
ming language to use (Duke, Salzman, Burmeister, Poon, &
Murray, 2000). The inherent difficulty of programming (Teague &
Roe, 2008; Winslow, 1996) and controlling what kind of mistakes
students are more likely to make (Spohrer & Soloway, 1986) are
also addressed.

However, a well-known empirical truth about teaching pro-
gramming is that a motivated student needs little guidance so he
will succeed no matter how bad are the overall conditions, teachers
included. Similarly, a student not motivated to spend some weekly
hours practicing will fail no matter what the teacher says or how
well the teacher explains all about computer programming.

Our teaching practice also led us to note that many students do
not have a realistic idea about their effective study performance.

� Some think that understanding the solutions presented by the
teacher or book is enough. They will probably try to solve their
first problem during the assessment itself.

� Others go a little further and do some exercises but stop train-
ing as soon as they reach a solution for a certain kind of prob-
lem. However, being able to solve a 10-min problem in a
couple of hours is far from sufficient and probably the student
is not even sure how the solution works.
� A more insidious kind of problem emerges with students that

always study in a (same) group. Frequently, what happens is
that although everyone follows and contributes to the solution,
it is always the same student that performs the first step from
the problem statement. The others just follow the lead and gen-
uinely believe they can alone solve the problem from the very
beginning.

In this paper the main concern is to address the need to per-
suade students to critically analyse their study methodology and
progress over the semester. So the focus is on failure reasons that
can be overcome by tuning computer programming methodology
of study.

Papers about difficulties in computer programming learning can
be found in the literature (Jenkins, 2002). In (Gomes & Mendes,
2007) difficulties are divided into five categories:

� The teaching methods – this addresses the lack of personalized
supervision and immediate feedback. Teachers must ensure
students follow the most appropriate learning approach while
respecting different learning styles, such as individual vs. group
study.

0747-5632/$ - see front matter � 2013 Elsevier Ltd. All rights reserved.
http://dx.doi.org/10.1016/j.chb.2013.07.044

⇑ Corresponding author. Tel.: +351 253510319.
E-mail addresses: mab@dsi.uminho.pt (M.A. Brito), fss@dsi.uminho.pt

(F. de Sá-Soares).
1 Tel.: +351 253510319.

Computers in Human Behavior 30 (2014) 623–628

Contents lists available at ScienceDirect

Computers in Human Behavior

journal homepage: www.elsevier .com/locate /comphumbeh

http://crossmark.crossref.org/dialog/?doi=10.1016/j.chb.2013.07.044&domain=pdf
http://dx.doi.org/10.1016/j.chb.2013.07.044
mailto:mab@dsi.uminho.pt
mailto:fss@dsi.uminho.pt
http://dx.doi.org/10.1016/j.chb.2013.07.044
http://www.sciencedirect.com/science/journal/07475632
http://www.elsevier.com/locate/comphumbeh


The focus on syntactical details instead of promoting problem
solving capabilities also needs to be addressed.

� The study methods – learning computer programming is a very
experimental and intense task, much different of other disci-
plines students are used to that are based on formulas or proce-
dures memorization. Programming demands a lot of extra class
work.
� The student’s abilities and attitudes – there is a students’ gener-

alized lack of problem solving capabilities. They read the prob-
lem description instead of analyzing it and jump to solve
something prior to understand the problem. They also lose
many learning opportunities because when facing a difficulty
they simply give up or ask for help which basically leads to
the same outcome.
� The nature of programming – the high level of abstraction

needed and the syntax complexity are also mentioned as
difficulties.

The job of programming requires skills such as analytical think-
ing, creative synthesis, and attention to detail. An additional funda-
mental skill is the ability to abstract, consisting in ‘‘the process of
identifying common patterns that have systematic variations’’
(Gabriel, 1989). A programmer needs to apply abstraction when
analyzing computational problems, as well as to instantiate ab-
stract programming concepts and techniques to solve particular
computational problems.

The syntax complexity of programming languages raises several
difficulties to novice programming students, since they may have
to simultaneously struggle with the inherent complexity of the
problem that has to be solved and the syntactical specificities of
the programming language used to convey the computational solu-
tion to the problem.

� Psychological effects – the lack of motivation for several possi-
ble reasons, being well known that an unmotivated student will
hardly succeed. This is aggravated by the fact that programming
courses usually gain a reputation that passes from student to
student of being difficult that so many of them start already
feeling defeated. There is also the fact that computer program-
ming is usually taught at the very beginning of higher education
courses, coinciding with a transition and instability period in
the students’ life (Teague, 2008).

2. Constructivism in education

Constructivism is a learning theory in which Jean Piaget argues
that people (and children in particular) build their knowledge from
their own experience rather than on some kind of information
transmission.

Later, based on Piaget’s insights on the experiential learning
paradigm, important works have been developed, such as Kolb’s
Experiential Learning Model (Kolb & Fry, 1975) which reinforces
the role of personal experiment in learning and systematizes
iterations of reflection, conceptualization, testing and back again
to new experiences. A rich set of works about constructivism in
education can be found in (Steffe & Gale, 1995).

Meanwhile, the discussion was brought to the computer science
education field, with the claim that real understanding demands
active learning on a lab environment with teacher’s guidance for
ensuring reflection on the experience obtained from problem
solving exercises. In other words, passive computer programming
learning will likely be condemned to failure (Ben-Ari, 1998;
Hadjerrouit, 2005; Wulf, 2005).

Indeed, effective learning according to the constructivist
perspective demands the mental construction of viable models.

As argued by (Lui, Kwan, Poon, & Cheung, 2004), learning to pro-
gram is a difficult endeavour because the learning process is sus-
ceptible to several hazards. Although all students face these
hazards (Lui et al., 2004) observe that weak students get stumbled
and stalled more easily when they encounter such hazards. From
our experience of teaching computer programming courses, we
think that the characteristics of weak students that magnify the
impacts of those learning hazards are, to some extent, shared by
the average novice student of computer programming – the stu-
dent population target of this paper. Those characteristics include
lack in training in abstraction processes, lack of a prior foundation
for anchoring the construction of new knowledge, and low levels of
confidence in themselves, in the teachers, and in the study materi-
als or practices.

The main reason for the authors’ concern with constructivism is
the conviction that teaching must always be focused on the people
learning process. Even in organizations in general, there is already
the belief that the integration of knowledge has achieved limited
success primarily because it has focused on treating knowledge
as a resource instead of focusing on the people learning process
(Grace & Butler, 2005).

3. Why weekly assessment

An interesting study that crosses students’ individual cognitive
level with the types of errors made (Ranjeeth & Naidoo, 2007) sug-
gests the need to adopt innovative strategies in order to counter
the seemingly perpetual rate of failure and at the same time
increase the intensity for students with better cognitive level.

Whatever the reason, the ultimate truth is that a lot of things
can go wrong when learning computer programming, especially
in undergraduate courses.

So it is virtually impossible to prevent them all, mainly because
students tend to overestimate their own understanding (Lahtinen,
Ala-Mutka, & Järvinen, 2005) and usually they are not very open to
follow teacher’s good advices, especially if following those advices
means more work.

This leads to the only winning strategy we have found so far:
fail fast to learn sooner. If frequent assessment opportunities are
given to the student, no matter the reason why he is eventually
performing badly, two important goals are immediately achieved:

� there is still time to change student’s study methodology and
� the teacher finally gets some real attention from the student to

his good advices.

Even for students who do not need to fail to correct eventual
study errors, we observe that weekly assessment is an extra moti-
vation for not postponing study and consequently they will also at-
tend next class better prepared (Becker & Devine, 2007).

Other medium term issues related with tuning the discipline
from year to year are also addressed by weekly assessment. The
ordering of different concepts by difficulty (Milne & Rowe, 2002)
can be inferred from final examinations or by directly asking stu-
dents and teachers, but if we have automated weekly assessments
this kind of data is readily available. So it is easier tuning the clas-
ses’ distribution along the year, dedicating more time and exercises
to those issues we know students need more time to assimilate
and eventually to concentrate easier subjects in less classes.

4. How weekly assessment

Weekly assessment involves several dimensions. First we need
a methodology and then implementation resources. For the
methodology we have a set of supposedly good advices and

624 M.A. Brito, F. de Sá-Soares / Computers in Human Behavior 30 (2014) 623–628



Download English Version:

https://daneshyari.com/en/article/350717

Download Persian Version:

https://daneshyari.com/article/350717

Daneshyari.com

https://daneshyari.com/en/article/350717
https://daneshyari.com/article/350717
https://daneshyari.com

