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1. Introduction

Acidophiles and alkaliphiles are organisms that thrive under
highly acidic (usually at pH 2.0 or below) or alkaline condition
(with a pH of 9–11). During the past two decades, studies have
focused on the physiology and molecular genetics of them to
elucidate their mechanisms of adaptation to acidic or alkaline
environment [1]. Industrial applications of them have also been
investigated, and some commercial acidic and alkaline enzymes
from them have brought great advantages to industry [2–4]. Thus,
it is clear that acidophiles and alkaliphiles are quite important and
interesting not only academically but also industrially. However,
the internal pH values of acidophiles and alkaliphiles are close to
neutrality, it is clear that their extracellular enzymes must be
stable and active at the appropriate pH extreme [5].

The stability of acidic and alkaline enzymes has been studied in
the biophysical and biotechnological research areas [6–8], because
enzyme instability at pH extreme is one of the main bottlenecks in
extending the application of it. Dubnovitsky et al. [6] determined
the crystal structure of the phosphoserine aminotransferase from
the obligatory alkaliphiles Bacillus alcalphilus at 1.08 Å resolution
and compared to the other two neutrophilic homologs, they found
that the alkaliphilic representatives possessed a set of distinctive
structural features. Kelch et al. [7] analyzed the unfolding behavior

and determined the structure of Nocardiopsis alba Protease A
(NAPase), an acid-resistant, kinetically stable protease, and
compared these results with a neutrophilic homolog, a-lytic
protease (aLP). Although NAPase and aLP had the same number of
acid-titratable residues, kinetic studies revealed that the height of
the unfolding free energy barrier for NAPase was less sensitive to
acid than that of aLP, thereby accounting for NAPase’s improved
tolerance of low pH. On the other hand, it has been investigated
whether acidophily and alkaliphily can be detected at the amino
acid level [8–10]; such studies have detected some preferences of
acidic and alkaline enzymes for particular amino acids. However,
to our present knowledge, there have been few parallel progresses
with respect to theoretical predictions about acidic (or alkaline)
enzyme stability, although it has been commonly applied to
predict protein thermostabilization [11–13]. One of the main
reasons is that it is difficult to collect the sequence and structure
information about acidic and alkaline enzymes. As mentioned
above, the internal pH values of acidophiles and alkaliphiles are
close to neutrality, the proteome information of some acidophiles
(e.g.: Ferroplasma acidarmanus [14]) and alkaliphiles (e.g.: Bacillus

halodurans [15]) cannot be directly used, although their genome
information was available. On the other hand, some non-
acidophiles and non-alkaliphiles can also produce acidic or
alkaline enzymes [16–17].

In the present work, we aim to design optimal predictors to
discriminate acidic and alkaline enzymes based on sequence and
structure information. As we know, many machine learning
methods, such as neural network and support vector machine
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A B S T R A C T

Understating the adaptation mechanism of enzymes to pH extremes and discriminating them is a

challenging task and would help to design stable enzymes. In this work, we have systematically analyzed

the secondary structure amino acid compositions of 105 acidic and 111 alkaline enzymes, respectively.

We found that the propensity of the individual residues to participate in different secondary structures

might be a general stability mechanism for their adaptation to pH extremes. Based on it, we present a

secondary structure amino acid composition method for extracting useful features from sequence, and a

novel ensemble classifier named random forest was used. The overall prediction accuracy evaluated by

the 10-fold cross-validation reached 90.7%. Comparing our method with other feature extraction

methods, the improvement of the overall prediction accuracy ranged from 5.5% to 21.2%. The random

forests algorithm also outperformed other machine learning techniques with an improvement ranging

from 3.2% to 19.9%.
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have been successfully applied in many fields for data classifica-
tion. However, they are definitely time consuming to find the
appropriate function and optimal-free parameters for very large
training datasets. So it is significant to find a new algorithm that is
fast and robust. Here, we will make use of random forests (RFs), a
novel tree-based ensemble approach, developed by late Breiman
[18]. Researchers have shown that RF performed better than other
machine learning methods in genomics and proteomics studies
[19,20], as well as in protein–protein interaction prediction [21],
gene expression data analysis [22] and more recently in prediction
of DNA-binding residues in proteins [23].

In this paper, we propose a novel method for predicting acidic
and alkaline enzymes using the RF algorithm in conjunction with a
feature named secondary structure amino acid composition
(ssAAC). We got 216 sequences with less 25% identity to each
other and investigated the stability mechanism systematically.
And, the predicting result was quite encouraging; it could achieve
an overall accuracy of 90.7% with Matthew’s correlation coefficient
of 0.82, and with an area under ROC curve (AUC) of 0.958.

2. Materials and methods

2.1. Datasets

To obtain high-quality and unbiased dataset, the data were strictly screened

according to the following procedures. (1) The classification of acidic enzymes (with

optimal pH < 5.0) and alkaline enzymes (with optimal pH > 9.0) was based on

BRENDA at http://www.brenda-enzymes.info/ [24] and the sequences were also

downloaded from it, which came from the databases of UniProt/Swiss-Prot. (2)

Sequences which have less than 100 amino acid residues were removed because

they might be partial or just be fragments. (3) Sequences which contain three or

more consecutive uncertain amino acids (i.e. ‘‘XXX,’’ ‘‘XXXX,’’ and so on) were

removed. (4) To avoid any homologous bias, a redundancy cutoff was imposed by

Blastclust [25] to exclude those sequence that have �25% sequence identity to any

other in the same subset according to Chou and Cai’s work [26]. Thus, a total of 216

sequences were generated that consist of 105 acidic enzymes, 111 alkaline

enzymes. It could be obtained freely at http://iib.hqu.edu.cn/zhang/download.asp.

2.2. Secondary structure amino acid composition

Secondary structure prediction of the 216 sequences was carried out using the

Predator program [27]. It could perform protein secondary structure prediction

from a set of sequences, the method is especially appropriate for large-scale

sequence analysis efforts [28,29]. The content of amino acid residues in helix, sheet

and random coil regions were computed. It defined as

Compði; jÞ ¼
Xni; j

N j
; (1)

where i stands for amino acid residues, j stands for helix, sheet and coil. ni,j is the

number of i in j, Nj is the total number of all 20 amino acids in j. All these calculations

were performed by a C++ program developed in-house.

2.3. Random forests

Random forests is a novel ensemble classifier; it uses a similar but improved

method of bootstrap as bagging. It uses the strategy of a random selection of a

subset of m predictors to grow each tree, where each tree is grown on a bootstrap

sample of the training set. This number, m, is used to split the nodes and is much

smaller than the total number of variables available for analysis. For more detailed

information, please see references proposed by Breiman [18].

2.4. Validation check methods

The performance and robustness of the model was evaluated by the self-

consistency test and the independent test. Among the independent dataset test, the

sub-sampling (n-fold cross-validation) test and jackknife test, which are often used

for examining the accuracy of a statistical prediction method [30], the jackknife test

was deemed the most objective that can always yield a unique result for a given

benchmark dataset, as elucidated in [31] and demonstrated by [32]. Therefore, the

jackknife test has been increasingly and widely adopted by investigators to test the

power of various prediction methods [33–36]. However, since the jackknife test

would take too much computational time, in the current study we adopted the n-

fold cross-validation to demonstrate the performance of our method. We have

carried out 2-fold, 3-fold, 4-fold, 5-fold, 7-fold, 10-fold, 20-fold and 50-fold cross-

validation tests.

2.5. Waikato environment for knowledge analysis (Weka)

We have also approached the discrimination of acidic and alkaline enzymes

using other machine learning techniques as alternatives to RF using the same

datasets. All the algorithms implementations were achieved using the Weka

package, which is an open-source collection of machine learning algorithms created

at the University of Waikato in New Zealand. It is written in Java and is comprised of

a powerful experimenter to run datasets through multiple algorithms [37]. The

program is still in active development, so at the time of this manuscript the latest

Version 3.5.8 was used.

2.6. Evaluation of the performance

The final performance of our method was determined by measuring the

sensitivity (SE), specificity (SP), accuracy (ACC), Matthew’s correlation coefficient

(MCC) and the receiver operating characteristic (ROC) score. The ROC score is the

area under the ROC curve (AUC) and were calculated automatically by the Weka

software. The SE, SP, ACC and MCC parameters were calculated using equations (2)–

(5), respectively.

SE ¼ TP

TPþ FN
(2)

SP ¼ TN

TNþ FP
(3)

ACC ¼ TPþ TN

TPþ FPþ TNþ FN
(4)

MCC ¼ TPTN� FPFNffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðTPþ FNÞðTNþ FPÞðTPþ FPÞðTNþ FNÞ

p (5)

where TP are true positives (alkaline enzymes predicted as alkaline); FN are false

negatives (alkaline enzymes predicted as acidic); TN are true negatives (acidic

enzymes predicted as acidic) and FP are false positives (acidic enzymes predicted as

alkaline).

3. Results

3.1. Differences of amino acid composition in acidic and alkaline

enzymes

The differences in the contribution of individual amino acid to
the overall and the predicted secondary structures between acidic
and alkaline enzymes are given in Fig. 1. From this figure, we
observed that the amino acids in acidic and alkaline enzymes
greatly varied. Here, if jCompAK,i � CompAC,ij > 1, we regard i as the
significant amino acids, and they are listed in Table 1. From it, one
can see that the overall significant amino acids in alkaline enzymes
are Glu, Arg, Leu and Ala, whereas Ser, Thr and Asn in acidic
enzymes. As we know, the Arg d-guanido moiety can provide more
surface area for charged interactions, its side chain contains one
fewer methylene group than Lys, it has the potential to develop less
unfavorable contacts with the solvent, and it more easily maintains
ion pairs and a net positive charge at elevated pH [38]. Although
our results shared a common tendency for some amino acids in
alkaline enzymes, some differences exist among the cases. For
example, Glu is found significantly higher in alkaline enzymes in
our study; however, an analysis of alkaline M-protease suggested
that the alkaline adaptation involved decreasing in Asp, Glu, and
Lys residues [10]. On the other hand, Thr and Ser are known as the
best residue for interacting with the water surrounding protein
structure [39], this might be related to acidic adaptation for
enzymes. An observation that has not been reported earlier and
deserves mention is the consistent higher usage of Ser and Thr in
acidic enzymes. From a structural viewpoint, Ser, Thr and Asn are
polar uncharged residues; an increase in the number of polar but
uncharged residues would be expected to help maintain the polar-
outside/non-polar-inside balance that is critical for a folded
protein in an aqueous environment [40].

Our results also show that there are marked, significant amino
acid composition differences in the secondary structures of
alkaline and acidic enzymes. In alpha-helix, alkaline enzymes
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