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1. Introduction

Fermentation processes are widely used in food, pharmaceu-
tical, agrochemical and chemical industries. The production units
range from small scale for biopharmaceuticals to large scale for
bulk chemicals. A majority of the processes are operated in a batch
or semi-batch mode. Intense competition and regulatory require-
ments pose severe demands on consistency of these batches in
terms of the end of batch productivity and product quality [1].
However, fermentation processes are subject to intrinsic batch-to-
batch variability due to variability in raw material quality, state of
the seed culture and operator skills. It is therefore desirable to
automate monitoring, fault detection and diagnosis and control of
fermentation processes. This can lead to improved process
reliability, product quality and productivity as well as reduced
development time, manpower inputs and cost of production [2].

Typically, during operation, the product quality and batch
performance are monitored via off-line measurements of con-
centrations of the product, byproducts, biomass and substrates.
These measurements are expensive, labor intensive and time
consuming, are obtained at low frequencies (e.g., every few hours)
at pre-defined intervals and hence, may not always lead to timely
information about the status of the batch. Further, in some
processes, the product formation begins only towards the later
parts of the batch and this leads to additional difficulty in
adequately monitoring the process using these offline measure-
ments [3]. Fermentors are typically equipped with several on-line
sensors such as pH, temperature, concentrations of dissolved
oxygen (DO) and carbon dioxide and partial pressure of oxygen and
carbon dioxide in the exhaust gas. These measurements are
inexpensive, usually available at high frequencies (e.g., every few
seconds) and are obtained in an automated fashion. Hence, there is
enormous potential to use these measurements to effectively
monitor batch fermentation processes.

In the general process systems engineering literature, several
different techniques have been reported for process monitoring
and fault diagnosis [4]. These can be broadly classified as process
model based, knowledge based and historical data based. The
success of any model based strategy depends critically on the
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A B S T R A C T

Industrial fermentations conducted in a batch or semi-batch mode demonstrate significant batch-to-

batch variability. Current batch process monitoring strategies involve manual interpretation of highly

informative but low frequency offline measurements such as concentrations of products, biomass and

substrates. Fermentors are also fitted with computer interfaced instrumentation, enabling high

frequency online measurements of several variables and automated techniques which can utilize this

data would be desirable. Evolution of a batch fermentation, which typically uses complex medium, can

be conceptualized as a sequence of several distinct metabolic phases. Monitoring of batch processes can

then be achieved by detecting the phase change events, also termed as singular points (SP). In this work,

we propose a novel moving window based real-time monitoring strategy for SP detection based only on

online measurements. The key hypothesis of the strategy is that the statistical properties of the online

data undergo a significant change around an SP. The strategy is easily implementable and does not

require past data or prior knowledge of the number or time of occurrence of SPs. The efficacy of the

proposed approach has been demonstrated to be superior compared to that of reported techniques for

industrially relevant model organisms. The proposed approach can be used to decide offline sampling

timings in real time.
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adequacy of the underlying model. Industrial fermentation
processes typically employ complex media with multiple sub-
stitutable carbon and nitrogen substrates, which leads to
difficulties in developing adequate process models. Further,
several aspects of fermentation processes such as the dynamic
evolution of pH and concentration of dissolved oxygen, are not well
understood in general and this may lead to additional difficulties in
developing reliable process models. Hence, model based strategies
may not be suitable for monitoring of majority of industrial
fermentation processes. Knowledge based monitoring techniques
such as those based on fuzzy logic require expert knowledge of the
system and therefore are system specific [4,5]. Such expert
knowledge may not be available for the system of interest.
Further, even for cases where such knowledge exists in terms of the
manpower knowledgeable about the system, it is not straightfor-
ward to translate such knowledge to a form that can be readily
utilized by automated monitoring systems. Historical data based
methods rely on large amount of past data to capture the
underlying relationships between the process variables [4,6,7].
However, due to batch-to-batch variability intrinsic to fermenta-
tion processes, it is difficult for these techniques to delineate
between normal and abnormal variations.

Another set of methods, based on ideas from statistical control
literature, have been proposed that rely only on data available from
the current batch [8–10]. Fermentation processes typically utilize
complex organic substrates such as yeast extract in addition to
defined components such as glucose and ammonia. This provides a
substitutable multisubstrate milieu, which may result in sequen-
tial and/or simultaneous utilization of the substrates. The cellular
metabolism may be different in each such substrate uptake phase
[11]. Evolution of a batch fermentation process can then be
conceptualized as a sequence of such phases, each with its own
duration and dynamics. It is expected that batch-to-batch
variability would therefore, among other things, translate to
variations in switching times between the phases [12]. Hence,
effective monitoring can be achieved by detecting the time of
occurrence of these various phases. The reported technique based
on this philosophy detects the phase change time by identifying
qualitative changes in trajectories of the test statistic T2 and
principal component score plots [9]. Being qualitative in nature,
this technique is difficult to automate. While other statistical
process monitoring techniques such as Shewhart Charts, Cumu-
lative sum (CUSUM) and Exponentially weighted moving average
(EWMA) [8,10,13] have been applied for monitoring batch
processes in general, they have not been specifically applied for
monitoring fermentation processes characterized by multiple
phases since it is typically assumed in these techniques that the
entire batch data is characterized by single set of statistical
properties (such as mean and covariance).

In this article, we present a real time phase detection based
process monitoring scheme that does not require process model or
historical data. The scheme is inspired from statistical control
literature, is multivariate in nature, relies only on online
measurements and can be easily automated to work with
industrial processes. The basic premise in our approach is that
statistical properties of online measured data are different in
different phases. Hence, the problem of phase change detection is
treated to be equivalent to that of detection of changes in statistical
properties of the data. To be consistent with earlier work [9,12], we
refer to a point where phase change is detected as a singular point
(SP).

2. Experimental methods

In this study, experimental data has been collected for two different strains,

Amycolatopsis balhimycina DSM5908 and Bacillus pumilus ATCC 21951 while the

data for Amycolatopsis mediterranei S699 was taken from Doan et al. [9]. For A.

balhimycina and B. pumilus, the fermentation experiments were performed in a 2.5 l

fermentor equipped with various sensors and data acquisition system (Model:

Biostat B, B. Braun, Germany). The fermentor was aerated at a constant flow rate of

1.0 vvm (volume of air per unit volume of medium per minute) using a mass flow

controller. Dissolved oxygen (DO) concentration in the fermentor was maintained

at 40% of saturation value by controlling the stirrer speed in cascade mode with DO.

The concentrations of oxygen and carbon dioxide in the exhaust gas were measured

by infrared spectroscopy and paramagnetic analysis, respectively (Analyser

BINOS1002 M, Rosemount Analytical, Germany). The online measurements were

stored at 5 min intervals.

The Amycolatopsis balhimycina strain was a gift from Prof Anna Eliasson Lantz of

Denmark’s Technical University, Denmark, and was stored on Bennett agar plates at

4 8C. Seed culture was grown in 100 ml medium in a 500 ml capacity Erlenmeyer

flask with single baffle and incubated at 30 8C and 150 rpm. The seed medium

contained per liter of distilled water: glucose: 15 g, glycerol: 15 g, soya peptone:

15 g, NaCl: 5 g and yeast extract: 3 g. Upon reaching an optical density of �12 at

600 nm, 25 ml of the seed culture was transferred to a fermentor containing 1 l of

production medium. The production medium contained, per liter of distilled water,

glucose: 54–100 g, glycerol: 0–16 g, ammonium sulfate: 3–6.6 g, yeast extract:

0.75–1.5 g, defatted soybean flour: 0.25–1.0 g, ZnSO4: 0.02 g, FeSO4: 0.02 g,

trisodium citrate: 0.025 g, MgSO4: 1.5 g, MnSO4: 0.01 g, NaCl: 1 g, MES: 1.045 g

and KH2PO4: 0.2 g. In addition, the following vitamins were added: biotin:

0.00005 g, calcium-pantothenate: 0.001 g, nicotinic acid: 0.001 g, myo-inositol:

0.025 g, thiamin HCL: 0.001 g, pyridoxine HCL: 0.001 g and para-aminobenzoic

acid: 0.0002 g. Temperature was maintained at 30 8C and pH was maintained at 7.0

by adding 1.5N NaOH solution by using a pH controller. The online measurements

included NaOH flow rate, pH, agitator speed and DO.

A transketolase (tkt) deficient strain of Bacillus pumilus ATCC 21951 was procured

from Institute for fermentation, Osaka, Japan. The strain was maintained on Luria

Bertani agar slant and was stored at 4 8C. The preparation of pre-seed and seed

cultures and the culture transfer criteria were as described earlier [14]. The

production medium contained per liter of distilled water: glucose: 200 g, cas amino

acids: 15 g or corn steep liquor: 12 g, ammonium sulfate: 5 g, CaCO3: 16 g, MnSO4:

0.5 g, leucine: 0.5 g and tryptophan: 0.05 g. The temperature was maintained at

37 8C. The online measurements available for Bacillus pumilus were: pH, dissolved

oxygen, agitator speed and CO2 and O2 concentration in exhaust gas.

For both the strains, samples were drawn from the fermentation medium at

regular intervals to obtain the time profiles of concentrations of dry cell weight

(DCW), product(s) and substrate(s). Glucose, glycerol, D-ribose, acetate, acetoin and

2,3-butanediol were analyzed via RI detector on HPLC (Hitachi, Merck KgaA,

Darmstadt, Germany) using HP-Aminex-87-H column (Biorad, Hercules, CA, USA)

with column temperature maintained at 60 8C. A mobile phase of 5 mM sulfuric acid

with flow rate of 0.6 ml/min was used. The concentration of free amino acids was

estimated via the ninhydrin method. The details are described in earlier works

[11,14,15]. Ammonia was measured using Nessler’s reagent [16]. For A.

balhimycina, DCW was measured by filtering 10 ml of the fermentation broth

using pre weighted filter papers (Whatman, Brentford, Middlesex, UK) as reported

elsewhere[11]. Micrococcus luteus was used as a test organism to measure

antimicrobial activity of balhimycin [17]. For this purpose, agar test plates with

Micrococcus luteus growth medium were prepared. Holes were punched in the agar

medium and filled with fermentor samples. Then the plates were incubated for two

days at 30 8C. The growth inhibition diameter around the holes was measured and

concentration of balhimycin was determined using pre-computed calibration

curve.

The data for Amycolatopsis mediterranei S699 was taken from literature [9] and

consisted of the following online measurements: pH, dissolved oxygen, agitator

speed and CO2 and O2 concentration in exhaust gas.

3. Phase detection technique

3.1. Algorithm

In this work, the problem of monitoring of fermentation process
has been posed as that of detection of singular points (SPs). We
assume that the underlying characteristic dynamics and in turn the
statistical properties of the online data vary from one phase to
another. Thus, we propose that an SP can be detected by
appropriately detecting the change in the statistical properties
of the available online data as described below (Fig. 1). For the
current phase fi and a new data point xk (xk = [x1k x2k x3k. . .xpk]
where p is the number of variables being measured), the following
hypothesis is checked:

Null hypothesis : H0 : xk 2fi

Alternative hypothesis : H1 : xk =2fi
(1)
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