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a  b  s  t  r  a  c  t

Research  in  mathematics  and  science  education  reveals  a disconnect  for students  as  they
attempt to  apply  their  mathematical  knowledge  to science  and  engineering.  With  this  con-
clusion  in  mind,  this  paper  investigates  a particular  calculus  topic  that is  used  frequently
in science  and engineering:  the  definite  integral.  The  results  of  this  study  demonstrate  that
certain  conceptualizations  of the  definite  integral,  including  the area  under  a  curve and  the
values of an  anti-derivative,  are  limited  in their  ability  to help  students  make  sense  of  con-
textualized  integrals.  In  contrast,  the  Riemann  sum-based  “adding  up pieces”  conception
of the  definite  integral  (renamed  in this  paper as  the “multiplicatively-based  summation”
conception)  is  helpful  and useful  in  making  sense  of a variety  of  applied  integral  expressions
and  equations.  Implications  for  curriculum  and  instruction  are  discussed.

© 2015 Elsevier  Inc. All  rights  reserved.

1. Introduction and rationale

In the last decade there has been increased attention given to researching students’ understanding and use of the calculus
topic of the definite integral (e.g., Bajracharya & Thompson, 2014; Jones, 2013; Kouropatov & Dreyfus, 2013; Rasslan & Tall,
2002; Sealey, 2014; Thompson & Silverman, 2008; Wemyss, Bajracharya, Thompson, & Wagner, 2011). Integration is a key
topic that deserves our attention for several reasons. In a purely mathematical sense, it is a significant component in subse-
quent mathematics courses, including further coursework in the calculus series (Salas, Etgen, & Hille, 2006; Stewart, 2012;
Thomas, Weir, & Hass, 2009) and in higher level mathematics, such as differential equations (Boyce & DiPrima, 2012) and
complex analysis (Brown & Churchill, 2008). Thus, integration is an important foundational concept for a program of study
in mathematics. However, the integral goes much further than this; it also serves as the basis for many real world applica-
tions in science and engineering. Physics and engineering textbooks regularly use integrals to define and compute natural
phenomena like force, mass, center of mass, impulse, flux, circulation, energy, work, tension, and aspects of kinematics
(Hibbeler, 2012; Pytel & Kiusalaas, 2010; Serway & Jewett, 2008; Wilson, Buffa, & Lou, 2010).

Yet this begs the question why we, as mathematics educators, should be concerned with how science disciplines, such as
physics and engineering, use integration. The answer to this question is two-fold. First, as a “service course,” first-year calculus
at many universities is largely filled with students planning on majoring in science and engineering fields (Bressoud, Carlson,
Mesa, & Rasmussen, 2013). Consequently, it may  be that the students coming into our calculus classes are less motivated by
pure mathematics than they are about being able to use the mathematics in their respective disciplines. Calculus instructors
should be willing to address the needs of this large segment of their student population. Second, there is currently a push to
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improve science, technology, engineering, and mathematics (STEM) education as a connected whole (College Board, 2012;
President’s Council of Advisors on Science and Technology, 2012). This push implies that effort should be made by instructors
of all STEM courses, including calculus, to assist in promoting success in these important fields of study.

Unfortunately, studies in both mathematics and science education give evidence of a serious disconnect between math-
ematics and the science disciplines it serves. For example, science contexts give additional layers of meaning to variables in
mathematical expressions and equations, making the application of mathematics to science challenging (Dray & Manogue,
2005; Redish, 2005; Torigoe & Gladding, 2011). The way students learn mathematics in their mathematics courses does not
always line up with how they need to draw on that knowledge in science and engineering (Gainsburg, 2006, 2007). Bridging
that gap must involve insight from the mathematics education community; it is not a task for science education alone. We
should develop mathematical understanding in our courses that supports application to other fields.

While we are beginning to learn how students create and hold knowledge about the definite integral (see Grundmeier,
Hansen, & Sousa, 2006; Jones, 2013; Rasslan & Tall, 2002), there is scant evidence about how these cognitive constructs
actually play out for students in making sense of the expressions and formulas in which integrals are present. Sealey
and Engelke (2012) suggest that the area conception alone is not sufficient for robust understanding of integrals, and
(Jones, 2013) supports this conclusion with an example of a student who struggled to interpret a physics integral through
the area lens. Furthermore, Jones describes how a shift to an adding up pieces conception helped this student make
sense of the integral he was struggling with. Neither of these studies, however, constitutes a deep analysis of how var-
ious conceptualizations of the definite integral provide students with the cognitive resources to understand integrals in
mathematics and science contexts. Without such an analysis, it is difficult to determine how to provide students the oppor-
tunities to construct knowledge of the integral that will satisfactorily enable them to apply their knowledge to science and
engineering.

This study attempts to provide some of this needed analysis by carefully examining how certain conceptualizations of the
integral drive understanding in mathematics and science contexts. The study examines, in both of these contexts, student
conceptualizations of the definite integral that are related to three common interpretations of the definite integral: (a) as
the area under a curve, (b) as the values of an anti-derivative, and (c) as the limit of Riemann sums (see Salas et al., 2006;
Stewart, 2012; Thomas et al., 2009). Note that even though the anti-derivative notion is often thought of as the province of
indefinite integrals, students show a tendency to interpret definite integrals through the anti-derivative lens as well (Jones,
2013). Each of these three conceptualizations of the integral is evaluated for how helpful or useful it is for making sense
of definite integral expressions and equations. Specifically, this paper attempts to shed light on the following three core
questions: (1) Which of these three conceptualizations of the definite integral appear to be most useful for making sense
of integrals in a pure mathematics context? (2) Which of these three conceptualizations of the definite integral appear to
be most useful for making sense of integrals in an applied physics context? (3) What is the overlap or disjunction between
these two contexts?

2. Background

2.1. Symbolic forms of the definite integral

This paper builds on a previous study (Jones, 2013) that details several conceptualizations of the definite integral held
by calculus students. In this section, the reader is briefly acquainted with three of the conceptualizations described in that
study, which deal with how students cognitively hold the familiar notions of area under a curve, anti-derivatives, and
Riemann sums in connection with integrals. While there are certainly meanings beyond these three conceptions (e.g., Hall,
2010), these are the only ones under analysis in this study. The reason for choosing to concentrate only on the these three
conceptualizations is that calculus textbooks often focus on area, anti-derivatives, and the Riemann integral during the
exposition of and treatment of integrals (see, for example, Salas et al., 2006; Stewart, 2012; Thomas et al., 2009). Integrals in
texts are often motivated by the study of irregular areas under the graphs of functions, approximated with finite Riemann
sums, defined using the Riemann integral definition, and worked with using anti-derivatives. It is important to note that
student conceptualizations are not necessarily equivalent to these ideas, but are rather based on them.

The way in which students cognitively possess these three conceptualizations is described through the lens of symbolic
forms (Sherin, 2001). A symbolic form consists of a symbol template and a conceptual schema. The symbol template is the

structure or arrangement of the symbols in the expression or equation, as in
∫ []

[]
[]d[] or

∫
[][]d[], where each box “can be

filled in with any expression” (Sherin, 2001, p. 490). The conceptual schema, on the other hand, “is the idea to be expressed”
in those symbols (Sherin, 2001, p. 491). That is, it’s the meaning that students see as being represented by the symbols in
the definite integral structure. Three symbolic forms of the integral, called the perimeter and area, the function matching, and
the adding up pieces forms, describe conceptualizations based on the area under a curve, anti-derivative, and Riemann sum
conceptions, respectively. This paper does not analyze these symbolic forms in and of themselves, and the reader is referred
to Jones (2013) for more detailed descriptions and an analysis of these cognitive structures. Rather, in this paper, these
symbolic forms were used during the analysis for determining which conceptualization of the definite integral students
were drawing on during a particular interview item. Therefore, it is necessary to briefly acquaint the reader with these three
symbolic forms.
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