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a  b  s  t  r  a  c  t

Conceptual  blending  describes  how  humans  condense  information,  combining  it  in  novel
ways.  The  blending  process  may  create  global  insight  or new  detailed  connections,  but  it
may  also  result  in  a loss  of  information,  causing  confusion.  In  this  paper, we describe  the
proof  writing  process  of  a group  of  four students  in  a university  geometry  course  prov-
ing  a statement  of the form  conditional  implies  conditional,  i.e.,  (p  →  q)  ⇒  (r →  s).  We  use
blending  theory  to  provide  insight  into  three  diverse  questions  relevant  for proof  writing:
(1) Where  do  key ideas  for proofs  come  from?,  (2)  How  do students  structure  their  proofs
and  combine  those  structures  with  their  more  intuitive  ideas?,  and  (3) How  are  students
reasoning  when  they fail to keep  track of  the  implication  structure  of  the  statements  that
they are  using?  We  also  use  blending  theory  to  describe  the  evolution  of the  students’  proof
writing  process  through  four  episodes  each  described  by a primary  blend.

© 2013 Published by Elsevier Inc.

1. Introduction

In this paper we illustrate the power of the theory of conceptual blending to clarify issues that students have in proving
a statement having the overall structure of a conditional implies a conditional, i.e., (p → q) ⇒ (r → s). This logical structure
occurs often in statements to be proven at the university level. For example, since the definition of A is a subset of B (A ⊆ B)
is a conditional statement (x ∈ A implies x ∈ B), then a simple set theory statement such as “If A ⊆ B, then A ∪ B ⊆ B,” has this
logical form. Another instance occurs when proving the induction step in a proof by induction. Likewise, a calculus statement
such as “if a function f is increasing, then f is one-to-one” also has this logical structure because the definition of increasing (if
x1 < x2, then f(x1) < f(x2)) and the definition of one-to-one (if f(x1) = f(x2), then x1 = x2) are conditional statements. In addition,
this structure can be found in real analysis contexts such as proving “every convergent sequence is Cauchy.”

Although statements of the form “a conditional implies a conditional” are frequently used in mathematics, students
often have difficulty proving properties stated in this form. These difficulties appear in the literature when the tasks given
to students involve statements with the overall structure of a conditional implies a conditional (e.g., Knapp & Roh, 2008;
Selden & Selden, 1995; Weber, 2001). However, these studies neither address students’ understanding of the structure nor
account for student difficulties with the structure when constructing a proof, which is a focus in this study.

In this paper we examine a group of students while they try to prove one direction of the equivalence of two  forms of
the parallel postulate of Euclidean geometry, that is implicitly structured in the form of a conditional implies a conditional.
While analyzing and describing the students’ proving activity, we  will employ the theory of conceptual blending. As described
below in the results section, blending theory allows us to illustrate connections across a number of different issues that occur
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in proving and to organize the story-line of the evolution of student thinking in ways that are unique in the mathematics
education literature.

2. Literature on proving

We  define proving as the activities involved in constructing a proof which include the reasoning involved in such activities.
Several studies indicate that undergraduate students often struggle with proving (e.g., Moore, 1994; Selden & Selden, 2008).
Students’ misunderstanding of logical rules and misinterpretation of logical statements may  result in their difficulty with
structuring their proofs (Brown, 2003; Harel, 2001). In particular, undergraduate students often have difficulty properly
using the contrapositive equivalence (Stylianides, Stylianides, & Philippou, 2004), Modus Tollens (Inglis & Simpson, 2008),
and other conditional inferences (Durand-Guerrier, 2003; Rettke, 2004). Many students tend to structure their proofs in terms
of chronological order of their thought process instead of rearranging it with careful consideration of proper implications
(Dreyfus, 1999). Alcock and Weber (2005) found that many real analysis students evaluate an argument as a valid proof as
long as each assertion in the argument is valid even though the statements listed later in the proof do not follow legitimately
from earlier assertions in the proof. The studies suggest that students often have difficulty with many aspects of structuring
a proof.

Epp (2003) suggests that without explicit guidance about the mathematical meaning of conditionals, biconditionals,
and quantified statements, undergraduate students might interpret these statements colloquially. Other studies support
this claim by reporting students’ mis-interpretation of such logical statements, especially conditional statements (Durand-
Guerrier, 2003) and quantified statements (Dubinsky & Yiparaki, 2000; Roh, 2010). Furthermore, Selden and Selden’s (1995)
study discusses how students’ lack of ability to identify hidden quantifiers and implications in informal statements may
hamper their ability to determine a proof framework for the statement.

The literature also shows that students are often unable to bring useful syntactic knowledge to mind. Such knowledge
includes formal definitions (Knapp, 2006) as well as theorems and properties (Weber & Alcock, 2004) of the mathematical
concepts. Weber (2001) found that undergraduate students are often unable to strategically choose theorems when con-
structing a proof, even though the students already had knowledge of the theorems and possessed an accurate conception
of mathematical proof. Indeed, students tend to predominantly use only a single mode of knowledge when constructing a
proof (Alcock & Simpson, 2004).

Likewise, research calls attention to various forms of personal knowledge of mathematical concepts. Such knowledge is
internally meaningful to an individual student (Pinto & Tall, 2002; Vinner, 1991). It helps a student recall conceptual ideas to
apply when attempting to construct a proof. For instance, Knapp and Roh (2008) illustrate how advanced calculus students’
ideas of convergence play a role in their attempt to prove every convergent sequence is a Cauchy sequence. Because of its
private and informal nature, students’ personal knowledge is often insufficient for them to know how to get started on a
proof (Moore, 1994). Raman (2003) suggested the key idea as a means of connecting personal intuitive ideas and procedural
knowledge when constructing a proof. She explains when students possess a key idea for a proof it gives them conviction
as well as the basis for the formal mathematical proof. The key idea thus provides students with an important insight about
relationships between ideas in the conceptual setting from which they may  begin to build a more structured proof. Raman
and Weber (2006), Raman Sundström and Zandieh (2009), and Zandieh, Larsen, and Nunley (2008) have illustrated ways in
which a key idea was successfully used to bridge the gap between students’ personal ideas for a proof and a more formal
mathematical form of that proof.

The conditional implies conditional structure is common in statements proved by students of this level. However,
researchers have not highlighted the role of the conditional implies conditional structure in their analysis, even though
their students were proving statements of this type (e.g., Brown, 2003, 2008; Knapp & Roh, 2008; Selden & Selden, 1995).
Thus we add to the literature by describing students’ proving using this logical structure that is common in mathematical
problems, but which has not been directly addressed in previous work.

To describe student proving we focus both on semantic issues of creating a key idea for a proof and syntactic issues of
structuring the proof and working with the logical structure of the statements involved in the proof. To do so we  draw on
the theory of conceptual blending, which is described in the following section. Conceptual blending is a different type of
theory than is often used in the mathematics education research literature.

Many frameworks describe student thinking in ways that help us parse various ways a concept may  be understood or
discussed by students or teachers (e.g., Carlson, Jacobs, Coe, Larsen, & Hsu, 2002; Vinner & Dreyfus, 1989; Zandieh, 2000).
Other frameworks allow us to distinguish the structure of one student’s argument from another (e.g., Alcock & Simpson,
2004; Harel & Sowder, 1998; Weber & Alcock, 2004). These types of distinctions are important and helpful. Blending theory
is different from this set of research in that it is less about categorizing student thinking and more focused on the process
by which people create new ideas.

There are other frameworks in mathematics education that describe idea creation. For example the work done using
the Action, Process, Object, Schema (APOS) framework (cf., Dubinsky, 1991; Dubinsky & McDonald, 2002) or Sfard’s (1991)
description of reification. However, these are predominately a description of how students may  evolve from understanding
a concept in one way to eventually understanding the concept in another way. Blending is different than this in that it is not
about changing our view of a particular concept, but rather about bringing together two  ways of thinking to create a third.
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