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a  b  s  t  r  a  c  t

Researchers  continue  to  emphasize  the  importance  of  covariational  reasoning  in  the  con-
text  of students’  function  concept,  particularly  when  graphing  in  the  Cartesian  coordinate
system  (CCS).  In  this  article,  we extend  the  body  of  literature  on  function  by  characterizing
two  pre-service  teachers’  thinking  during  a teaching  experiment  focused  on  graphing  in
the polar  coordinate  system  (PCS).  We  illustrate  how  the  participants  engaged  in covaria-
tional  reasoning  to  make  sense  of graphing  in the  PCS  and  make  connections  with  graphing
in  the  CCS.  By  foregrounding  covariational  relationships,  the  students  came  to  understand
graphs  in  different  coordinate  systems  as  representative  of  the same  relationship  despite
differences  in  the  perceptual  shapes  of  these  graphs.  In synthesizing  the  students’  activ-
ity,  we  provide  remarks  on  instructional  approaches  to  graphing  and  how  the  PCS forms  a
potential context  for promoting  covariational  reasoning.

© 2013 Elsevier Inc. All rights reserved.

1. Introduction

First introduced at the elementary level, graphs are essential representations for the study of numerous mathematical
topics including modeling relationships between quantities, exploring characteristics of functions, solving for unknown
values, and investigating geometric transformations. Highlighting the central role of graphing in mathematics education,
the Common Core State Standards for Mathematics (National Governors Association Center for Best Practices Council of Chief
State School Officers, 2010) contains some form of the term graph on more than a third of the document’s pages. Building
from the emphasis on graphing at the K-12 level, graphing is central to the study of several undergraduate mathematics
courses: calculus, differential equations, and analysis, to name a few.

Reflecting the heavy focus on graphing in school mathematics, mathematics education research has given significant
attention to graphing, with a multitude of studies (e.g., Carlson, 1998; Leinhardt, Zaslavsky, & Stein, 1990; Oehrtman, Carlson,
& Thompson, 2008) having investigated students’ meanings for graphing in the context of function. Although graphing
receives significant attention in mathematics education research, little of this focus has been given to graphing in the polar
coordinate system (PCS). Complicating the matter, the sparse research (Montiel, Vidakovic, & Kabael, 2008; Montiel, Wilhelmi,
Vidakovic, & Elstak, 2009; Sayre & Wittman, 2007) available on students’ meanings for the PCS highlights student difficulties,
particularly pointing to difficulties involving problematic connections with the Cartesian coordinate system (CCS).

In the present study, we explore students’ thinking when graphing in the PCS and draw connections with existing research
on graphing and function. Specifically, we discuss two  undergraduate students’ reasoning when graphing in the PCS. To
graph relationships in the PCS, both students engaged in several ways of thinking that ranged from determining and plotting
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discrete points to reasoning about how quantities continuously vary in tandem. We illustrate these ways of thinking across
several different tasks and draw attention to the implications of these ways of thinking relative to the students’ ability
to flexibly use the PCS and CCS to represent relationships between quantities. Against the backdrop of these findings, we
conclude by discussing how the PCS offers a potential setting for promoting quantitative and covariational reasoning.

2. Background

Often first introduced in a precalculus course, the PCS is critical for the study of advanced mathematics and can be found
in numerous applications in engineering and the sciences. The PCS also plays a central role in exploring complex numbers.
For instance, the operations of multiplication, division, and exponentiation are more readily explored when using the polar
form of complex numbers. Although the PCS plays an important role in the aforementioned areas, research on student
thinking in the context of the PCS is sparse, with a pair of studies by Montiel et al. (2008, 2009) forming the most applicable
works to the present study. Both studies included a focus on the PCS, with the earlier study (Montiel et al., 2008) having
explored relationships among two-dimensional coordinate systems and the subsequent study (Montiel et al., 2009) having
included two- and three-dimensional coordinate systems. The authors made several important observations across these
studies including how students’ function meanings can cause difficulties when extended to the PCS.

Of relevance to the present study, Montiel et al. (2008) identified that the connections students create between the CCS
and PCS are tied to their meanings for function and graphing in the CCS. For instance, students often relied on rules learned
in the context of the CCS to determine whether a given relation is a function. These rules included applying the vertical line
test to determine whether a graphed relationship in the PCS is a function. Some students also referenced “known” functions
when determining whether graphs were functions. By “known,” we interpret the authors to mean that the students recalled
a shape in the plane that they had previously deemed a function (e.g., a student claiming that a parabola opening down is
a function because parabolas are defined as such). Compatible with the earlier study (Montiel et al., 2008), Montiel et al.
(2009) noted that when students moved among representational systems, the students’ function meanings did not entail
coordinating the different conventions of the representational systems, with the students often relying on the conventions
from one representational system (e.g., the CCS).

Montiel and colleagues’ findings (Montiel et al., 2008, 2009), and specifically students’ difficulty in coordinating rep-
resentational systems, speak to several researchers’ (Lobato & Bowers, 2000; Thompson, 1994c, 2013) statements about
multiple representations. Lobato and Bowers (2000) questioned, “. . .whether tables, graphs, and equations are multiple
representations of anything to students” (p. 4). Thompson (1994c) explained:

Tables, graphs, and expressions might be multiple representations of functions to us, but I have seen no evidence
that they are multiple representations of anything to students. In fact, I am now unconvinced that they are multiple
representations even to us, but instead may  be, as Moschkovich et al. (1993) have said, areas of representational activity
among which we  have built rich and varied connections. . .I  agree with Kaput (1993) that it may  be wrongheaded to
focus on graphs, expressions, or tables as representations of function, but instead focus on them as representations
of something that, from the students’ perspective, is representable,  such as some aspect of a specific situation. The
key issue then becomes twofold: (1) to find situations that are sufficiently propitious for engendering multitudes of
representational activity and (2) orient students to draw connections among their representational activities in regard
to the situation that engendered them. (Thompson, 1994c, pp. 39–40)

Moreover, if students are to conceive multiple representations of something,  then it is necessary that they not only
construct the something that is to be represented, but also have meanings for the representational systems such that when
the students operate within and move among systems, they can think about their representational activity as conveying the
same something.  Returning to the studies by Montiel and colleagues, the students did not appear to have distinct meanings
for the coordinate systems that simultaneously supported connections among the systems. Instead, their meanings were
inherently tied to the conventions of one coordinate system (e.g., the vertical line test and the CCS). In short, representations
are not external to the person doing the representing but instead consist of a system of mental actions and meanings that
the individual has organized into some cognitive structure (von Glasersfeld, 1987).

The construct of covariational reasoning (e.g., Carlson, Jacobs, Coe, Larsen, & Hsu, 2002; Saldanha & Thompson, 1998)
foregrounds students’ construction of “the something that, from the students’ perspective, is representable.” Covariational
reasoning entails the mental actions involved in conceiving two  quantities as varying in tandem (Carlson et al., 2002;
Saldanha & Thompson, 1998) and is central to students’ understanding of numerous secondary mathematics topics including
quadratic relationships (Ellis, 2011), exponential relationships (Castillo-Garsow, 2010; Confrey & Smith, 1995), trigonometric
relationships (Moore, 2012), rate of change (Carlson et al., 2002; Thompson, 1994a), function (Oehrtman et al., 2008), and
the Fundamental Theorem of Calculus (Thompson, 1994b).

In characterizing second-semester calculus students’ thinking, Carlson et al. (2002) identified how the students’ covaria-
tional reasoning influenced their ability to make sense of dynamic situations, interpret graphs, and create graphs. Specifically,
the authors identified several mental actions that the students engaged in when coordinating quantities that vary in tan-
dem. These mental actions included, but were not limited to, coordinating directional change (e.g., quantity A increases while
quantity B increases), coordinating amounts of change (e.g., the increase in quantity A decreases for successive increases
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