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Abstract

A new concept was evaluated for experimental multi-objective medium optimization using a genetic algorithm which is supported by an

artificial neural network (ANN). The ANN is used to model objective functions with the medium components as variables each time a new data set

has been produced. An appropriate topology of the ANN was first identified with simulation studies using a multi-dimensional test function (De

Jong’s function). The performance of this ANN model was validated from generation to generation with the data of an experimental optimization of

a medium with 13 medium components for Synechococcus PCC 7942. Objective functions were the simultaneous maximization of biomass

concentration and conversion of pentafluoroacetophenon (PFAP) for asymmetric synthesis of (S)-(�)1-(pentafluorophenyl)-ethanol. The mean

absolute error of the ANN simulation was within the experimental estimation error after six from eight generations for one of the two objective

functions (PFAP conversion). This artificial neural network supported genetic algorithm (ANNSGA) can thus be implemented at the end of a

stochastic optimization procedure to reduce the experimental effort.
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1. Introduction

The reduction of the invested time and costs for development

and improvement of a bioprocess is a fundamental demand in

today’s biotechnology. In the specific application of fermenta-

tion media formulation, the aim of the optimization is to

determine the most suitable reaction conditions (pH, tempera-

ture, etc.) and specially medium component concentrations

which maximize or minimize economically or technologically

important process variables (product concentration, yield,

selectivity, raw materials costs, etc.) [1]. However, due to the

metabolic complexity of microorganisms and the usually large

number of variables involved, the development of rigorous

models for a given biological reaction system on physical and

chemical basis is still a critical challenge. This is mainly due to

the non-linear nature of the biochemical network interactions

and, in some cases, the incomplete knowledge about the

kinetics involved in such systems.

Some recent innovations are notable as they incorporate the

use of advanced mathematical tools in a data-driven form to

model bioprocesses. As stated by Kim and Lewis [2] an

important goal is to formalize humanlike decision-making,

behaviour and performance into a rigorous system theory.

According to this concept, artificial neural network (ANNs) can

be considered under such techniques. ANNs have been utilized

with high success for system design, modelling, optimization

and control due mainly to their capacity to learn, filter noisy

signals and generalize information through a training procedure

[2–6]. ANNs are used commonly as ‘‘black box’’ models of key

variables whose relationship to other process entities are neither

formally described nor mathematically established, but are

assumed to occur. Training is referred as the minimization of an

error norm, which is usually the least squared criterion with

respect to the output of the network and the desired output.

Through this training procedure the parallel processing units of

the ANN (parameters) are adapted iteratively enabling thus

function approximation. Validation is done while presenting the

network a dataset not used for training and evaluating the

system performance under this situation.

Concerning the experimental optimization of media

formulation, the use of stochastic search procedures based
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on genetic algorithms (GAs) has been lately applied in an

efficacious manner compared to other methods, like statistical

design of experiments [1,7–11]. The success of this approach is

specially associated with the recent advances in the application

of miniaturisation and parallelization techniques to bioreactors,

allowing the implementation of a large number of simple batch

experiments which can be carried out simultaneously. GAs are

capable to explore large variable spaces with the additional

advantage of an evolutionary adaptation through selection,

information exchange and mutation. The strategy ‘‘survival of

the fittest’’ is applied according to the optimization objectives.

Some attempt have been made to use ANNs for optimising

recipes formulations, but their application has been restricted to

the use of 2–3 components [4,12–16], with an exceptional

maximum of six components reported by Ref. [17]. In their

work, the authors describe the incorporation of an ANN model

into a GA for the optimization of the xylitol production.

However, the authors do not give any clues or particulars

belonging to the ANN topology, activation functions or

validation procedure with independent experiments, which

complicates the conception of an adequate ANN prototype or

its extension to new processes.

Moreover, the effect of experimental errors or noisy

measurements is either not taken into account or simply

ignored by many reports. As stated by Zuzek et al. [10], robust

handling of experimental error is a most critical issue for

optimization success and a major challenge in media

formulation no matter which design method is applied.

This paper addresses the evaluation of ANN supported GA

applied to a multi-objective optimization problem of media

design. The simultaneous maximization of the biomass

concentration and conversion of pentafluoroacetophenon

(PFAP) with Synechococcus PCC 7942 is discussed. For both

variables a functional relation is supposed to exist between the

13 media components, which is represented by two ANNs. To

establish an appropriate topology for the ANN architecture,

i.e. the number of nodes in the input and hidden layers and to

select a proper training procedure, the De Jong test function

was examined. The function presents multi-dimensional

symmetry for the design variables, which resemble a pure

quadratic statistical design. The original De Jong test function

was modified adding a noisy signal to simulate error

measurement.

2. Materials and methods

2.1. Experimental set-up

The strain Synechococcus PCC 7942 was provided by the Pasteur Culture

Collection of Cyanobacteria, Paris. Innoculum preparation, media set-up

(Table 1) and cultivation conditions have been published elsewhere [18]. All

optimization experiments were performed under constant temperature of 20 8C
and constant incident light of 26 mEinstein m�2 s�1 at the surface of parallel

operated 1 ml glass reactors (32 mm � 11 mm, VWR, Germany) with a sterile

0.2 mm PTFE filter cap on the top. They were charged with 1 ml of each

medium to be tested. A maximum set-up of 80 reactors was incubated on a

rotary shaker with an eccentricity of 3 mm at 600 rpm. The initial cell

concentration was adjusted to 0.85 gdcw/L.

After 72 h cultivation the optical density was measured and evaporation was

determined gravimetrically for each micro reactor. Subsequently the evaporated

volume and sample volume for optical density measurement were compensated

with the respective original medium. After gas tight sealing of the reactor,

1.4 mM 20-30-40-50-60-Pentafluoroacetophenon (Interchim, France) was added

trough a septum using a syringe. The reaction mixtures were incubated at 20 8C
and 600 rpm on a rotary shaker with an eccentricity of 3 mm for 24 h in the dark

and product formation was analyzed by chiral gas chromatography according to

[19].

The dry cell weight (dcw) was estimated photometrically at 730 nm

(Genesis 20, Thermo Spectronic) and calculated using the correlation,

dcw = 0.2699 � OD730.

2.2. Modelling media formulation with artificial neural networks

Two artificial neural networks (ANN) were used as models associating the

concentrations of the various medium components to the biomass concentration

after 72 h and to the conversion of PFAP after 24 h, respectively.

The election of a suitable architecture and the activation functions was

based on explorative experiences carried out to assess the performance of the

ANN to describe the test function. The architecture of both ANNs was fixed to

three layers having 13 inputs. The number of nodes was varied initially from 1

to 15 for the first and hidden layers and afterwards fixed to 4 and 15, respectively

(see Section 3.1). Each input component was normalized in such a way, that its

corresponding concentration value entering the ANN lay between 0 and 1.

Accordingly, the output signal was de-normalized to the real value range of
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Table 1

Composition of modified BG11 medium and maximum variation of each component in media recipes

Numbers Media component Reference concentration (g/L) Range of variation in media recipes (g/L)

1 NaNO3 1.5 1.5 � 10�1 to 1.5 � 102

2 K2HPO4 3.1 � 10�2 3.1 � 10�3 to 3.1 � 10�1

3 MgSO4�7H2O 7.5 � 10�2 7.5 � 10�3 to 7.5 � 10�1

4 CaCl2�2H2O 3.7 � 10�2 3.7 � 10�3 to 3.7 � 10�1

5 Citric acid 6 � 10�3 6 � 10�4 to 6 � 10�2

6 Ferric ammonium citrate (18% Fe) 6 � 10�3 6 � 10�4 to 6 � 10�2

7 Na2CO3 4 � 10�2 4 � 10�3 to 4 � 10�1

Trace metals solution

8 H3BO3 2.86 � 10�3 2.86 � 10�4 to 2.86 � 10�2

9 MnCl2�4H2O 1.81 � 10�3 1.81 � 10�4 to 1.81 � 10�2

10 ZnSO4�7H2O 2.22 � 10�4 2.22 � 10�5 to 2.22 � 10�3

11 Na2MoO4�2H2O 3.9 � 10�4 3.9 � 10�5 to 3.9 � 10�3

12 CuSO4�5H2O 7.9 � 10�5 7.9 � 10�6 to 7.9 � 10�4

13 Co(NO3)2�6H2O 4.94 � 10�5 4.94 � 10�6 to 4.94 � 10�4
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