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There is a wide consensus in the literature that gender differences can be observed in tasks measuring mental
rotation ability. A possible explanation of this finding is the presence of gender differences in the processing
speed of mental rotation tasks. In two studies, we investigated the dimensionality and the presence of gender
differences in mental rotation processing speed in two mental rotation tasks. By applying a joint modeling
approach for responses and response times, we found that, in both tasks, mental rotation ability and mental
rotation processing speed can be regarded as unidimensional constructs. We replicated previous findings that
gender differences in mental rotation ability can be observed in both tasks, although we could not find gender
differences in mental rotation processing speed. Our results thus indicate that the observed gender differences
in mental rotation ability cannot be explained by gender differences in mental rotation processing speed.

© 2013 Elsevier Inc. All rights reserved.

1. Introduction

Spatial abilities constitute an important component in current
models of human intelligence (cf. Carroll, 1993; Johnson & Bouchard,
2005; McGrew, 2005). Studies on gender differences in human
intelligence indicate that many spatial ability measures exhibit
considerable gender differences in favor of male subjects. Meta-
analytic studies show that gender difference is particularly pronounced
in case of three-dimensional mental rotation tasks (e.g., Linn &
Petersen, 1985; Voyer, Voyer, & Bryden, 1995). Gender differences
have been generally found to be smaller in other spatial ability tasks
(e.g. spatial orientation tasks; cf. Coluccia & Louse, 2004). Although
there is evidence that the observed gender difference in favor of male
subjects is stable across cohorts (cf. Masters & Sanders, 1993; Voyer
et al., 1995), age (cf. Linn & Petersen, 1985), and culture (Silverman,
Choi, & Peters, 2007), there is evidence that themagnitude of the gender
difference varies with item design characteristics (cf. Arendasy &
Sommer, 2010; Voyer & Doyle, 2010) and general design characteristics
such as time limit. Further variables which influence the size of the
gender differences include the response format (Glück & Fabrizii,
2010; Titze, Heil, & Jansen, 2010) and the experiencewith similarmental
rotation tasks (e.g. Quaiser-Pohl, Geiser, & Lehmann, 2006). Numerous
explanations have been proposed to account for the observed male
superiority in three-dimensional mental rotation performance (for an
overview: Halpern, 2011). While some studies emphasize the role of
biological causes for the observed gender differences (e.g. Jaušovec &
Jaušovec, 2012; Peters, 2005), several studies investigated differences
in the strategies female and male respondents use when working on

three-dimensional mental rotation tasks (e.g. Arendasy, Sommer, &
Gittler, 2010; Geiser, Lehmann, Corth, & Eid, 2008). The influence of
these reported differences in test taking strategy on the psychometric
characteristics of mental rotation tests is still a topic of current research.
At least for some mental rotation tasks, unidimensionality and
measurement invariance across both gender groups has been dem-
onstrated (Arendasy & Sommer, 2010; Bors & Vigneau, 2011; Gittler &
Arendasy, 2003). Some models attributed gender differences in mental
rotation tasks to gender differences in speed-accuracy tradeoff. This
explanation is based on findings, which indicate that gender differences
in favor of male subjects decrease in effect size once time limits had
been removed from the test (cf. Goldstein, Haldane, & Mitchell, 1990).
Although this finding has not usually been consistently replicated
(e.g., Masters, 1998), a recent meta-analysis conducted by Voyer
(2011) indicate that gender differences in paper–pencilmental rotation
tasks indeed decrease in size when the psychometric measures were
administered without time limits. This finding could be due to at least
two different reasons: (1) the removal of time limits may allow female
respondents that are not well trained in this population to utilize
effective mental rotation strategies (cf. Arendasy, Sommer, Hergovich,
& Feldhammer, 2011; Arendasy et al., 2010), or (2) the observed
reduction of the gender difference in the untimed administration
condition could be due to a ceiling effect in the male population
(Voyer, 2011), meaning that male respondents are not able to further
improve an already excellent test performance when time limits are
removed. Because none of these previous studies assessed mental
rotation processing speed, it is hard to differentiate between these
two explanations. With the model by Goldstein et al. (1990) as basis,
onewould expect that gender differences inmental rotation processing
speed are either more pronounced or of the same magnitude than
gender differences in mental rotation accuracy. By contrast, if the

Learning and Individual Differences 29 (2014) 8–17

⁎ Corresponding author at: Department of Psychology, SCHUHFRIEDGmbH,Hyrtlstraße
45, 2340 Mödling, Austria.

1041-6080/$ – see front matter © 2013 Elsevier Inc. All rights reserved.
http://dx.doi.org/10.1016/j.lindif.2013.10.003

Contents lists available at ScienceDirect

Learning and Individual Differences

j ourna l homepage: www.e lsev ie r .com/ locate / l ind i f

http://dx.doi.org/10.1016/j.lindif.2013.10.003
http://dx.doi.org/10.1016/j.lindif.2013.10.003
http://www.sciencedirect.com/science/journal/10416080
http://crossmark.crossref.org/dialog/?doi=10.1016/j.lindif.2013.10.003&domain=pdf


reduced effect size of the gender difference in three-dimensional
mental rotation performance is mainly attributable to a ceiling effect
in the male population in case of untimed mental rotation tasks, one
would expect either no or small effect sizes of the gender differences
inmental rotation processing speed. Under thismodel, observed gender
differences in mental rotation accuracy should be large in magnitude
compared with the processing speed measure.

Some authors have already reported gender differences in mental
processing speed based on results found in elementary cognitive
tasks (for a review, see Roivainen, 2011). However, processing
speed is generally considered to be a complex, multi-dimensional
construct (e.g. Danthiir, Wilhelm, & Roberts, 2012; Danthiir,
Wilhelm, Schulze, & Roberts, 2005; Roberts & Stankov, 1999), so it
remains unclear whether these findings can be generalized to the
processing speed in chronometric or psychometric mental rotation
tasks.

1.1. Formulation of the problem

In this article, we want to evaluate these two conflicting hypotheses
using an item response theory model that enables the simultaneous
estimation of accuracy and processing speed parameters (Klein Entink,
Fox & van der Linden, 2009). Another advantage of this psychometric
approach is the possibility of simultaneously evaluating the dimen-
sionality of accuracy and processing speed measures of mental rotation
performance, which have been debated in the literature for some time
because of the possibility of solvingmental rotation tasks using different
solution strategies (cf. Arendasy et al., 2010; Geiser et al., 2008). We
investigated this problem in two separate studies, which used different
computerized mental rotation tasks. There were two reasons for
selecting these tasks: First, past studies have provided evidence that
both tasks show favorable psychometric characteristics, like unidimen-
sionality (e.g. Arendasy & Sommer, 2010; Gittler & Fischer, 2011).
Second, no ceiling effects have been reported for both tasks under
untimed conditions, which allowed us to test the hypothesis of Voyer
(2011) that ceiling effects in male respondents cause the reduction of
gender differences in three-dimensional mental rotation tasks.

2. Method

2.1. A multivariate multilevel approach for modeling speed and ability

In the literature, multiple approaches for modeling speed have been
described (for an overview of early approaches, see van der Linden &
Hambleton, 1997). This study chose an approach that has been
originally proposed by Klein Entink, Fox, et al. (2009). This approach
estimates parameters on three separate levels. We will provide a
rough overview of each model in the following sections. More detailed
introductions can be found in the literature (e.g. Fox, 2010; Klein
Entink, Fox, et al., 2009).

On thefirst level of this approach, two separatemodels for responses
and response times are defined. In our study, themodel for responses is
the one-parameter normal ogive model, which defines a person
parameter θi, which marks the ability of person i to answer items
correctly. The model further defines one item parameter bk for each
item k, which defines the respective item's difficulty. This model is
closely related to the Rasch model (Rasch, 1960; cf. Embretson &
Reise, 2000). In the one-parameter normal ogive model, the probability
that person i answers item k correctly is given by the following:

P ¼ þ θi; bkj Þ ¼ Φ θi−bkð Þ:ð ð1Þ

In this formula,Φ() denotes the cumulative distribution function of
the standard normal distribution, i.e. the probability that a standard
normally distributed variable is smaller than the value given by θi−bk.

The response times are described by the two-parameter log-
normal model. In this model, two item parameters are defined for
each item that describes the respective item's time intensity and
time discrimination. An item's time intensity denotes the average
amount of time which is generally needed to answer this item,
while its time discrimination denotes to which extent the observed
average response time of an item changes between fast and slow
responders. For each person i, a speed parameter is defined.

In the two-parameter log-normalmodel, the log response time Tik of
a person i working on item k is given by the following:

Tik ¼ −ϕkζ i þ λk þ εik: ð2Þ

In formula (2), ζi denotes the respondent's speed, λk denotes an
item's time intensity, and ϕk is an item's time discrimination. It follows
from the negative sign of the ϕkζi term that a higher speed parameter
leads to smaller response times if an item's time intensity remains
constant. εik is a residual term, which is assumed to be normally
distributed with an item-specific variance.

On the second level, the approach of Klein Entink, Fox, et al. (2009)
defines additional models to investigate the relationship between the
person and item parameters of the first level models. In these models,
the variances and covariances of the item and person parameters are
estimated.

The third level allows investigating the influence of person covariates
on the observed person parameters. In our study, the original model for
the responses and response times was further expanded to contain
gender as a distinct person covariate Gi (which took the value 0 for the
male population and 1 for the female population) and used to measure
the influence of gender on speed and ability by a linear regression
model:

θi ¼ γ00 þ Gi � γ01 þ eoi ð3Þ

ζ i ¼ γ10 þ Gi � γ11 þ e1i: ð4Þ

In this model, e is a residual term, which is assumed to be normally
distributed. The γ terms are regression coefficients which are to be
estimated.

2.2. Model selection and estimation

Under the presented Bayesian framework, several criteria have been
proposed for model selection, one of them being the Deviance Infor-
mation Criterion (DIC) (Spiegelhalter, Best, Carlin, & van der Linde,
2002; see also Fox, 2010; Gelman, Carlin, Stern, & Rubin, 2004). Model
selection based on this criterion tends to prefer less complex models
which show a good fit to the data. It has been already used in a number
of studies for model selection (e.g., Goldhammer & Klein Entink, 2011).
A detailed discussion of the DIC has been provided by Fox (2010),
Gelman et al. (2004), and others.

In our study, we estimated all model parameters using a Gibbs
sampling approach, which has been implemented in the software
package cirt (Klein Entink, 2011) for the statistical software R (R
Development Core Team, 2011). This approach is based on the
principal idea of simulating the multivariate posterior distribution
of all model parameters. The distribution of values drawn from the
Gibbs sampler converges to the posterior distribution; therefore,
convergence has to be tested. Values, which were drawn before
convergence was reached, are denoted as burn-in phase and usually
not used for further analysis. Based on the drawn values, the mean of
the posterior distribution (i.e. the expected a posteriori value, EAP)
and the highest posterior density (HPD) intervals can be calculated.
HPD intervals are the smallest intervals that contain a given percentage
(e.g., 95%) of the values of the posterior distribution and can be used to
test the statistical significance of model parameters.
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