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a b s t r a c t

The development of rational number knowledge has been studied extensively by mathematics education
researchers, cognitive-developmental psychologists and, more recently, by neuroscientists as well.
Building on a rich body of prior research, and some exciting new ideas, the target articles re-visit several
topics, with a view to refine and deepen our understanding of how rational number understanding
develops. The effect of prior natural number knowledge-either positive or adverse-on rational number
learning is highlighted by all contributors. I draw on the articles to discuss five different aspects of the
whole, or natural, number bias.

© 2015 Elsevier Ltd. All rights reserved.

1. Introduction

This special issue addresses the development of rational number
knowledge,1 an issue that has been studied extensively by mathe-
matics education researchers, cognitive-developmental psycholo-
gists and, more recently, has attracted the interest of
neuroscientists as well (e.g., Jacob, Vallentin, & Nieder, 2012).
Building on a rich body of prior research, and some exciting new
ideas, the contributors re-visit several topics, with a view to refine
and deepen our understanding of how rational number under-
standing is developed. Kelley and Rittle-Johnson study mis-
conceptions about decimal numbers in connection to the
individual's confidence about the response; McMullen, Laakkonen,
Hannula-Sormunen, and Lehtinen study the development of stu-
dents' understanding of density in a longitudinal study and with
the use of new statistical techniques; Van Hoof, Vandewalle, Ver-
schaffel, and Van Dooren take a closer look at students' interpre-
tation of literal symbols and their understanding of the effect of
operations combined; DeWolf and Vosniadou, and Torbeyns,
Schneider, and Siegler look into fractionmagnitude representations
with a view to support two different, albeit not incompatible,
theoretical views.

2. Rational numbers are difficult … but why?

Let me start this commentary with a point stressed in all con-
tributions, namely that rational numbers are challenging for stu-
dents. Drawing on empirical evidence as well as conceptual
analyses coming for numerous studies, Moss (2005) summarizes
several reasons why rational numbers are difficult: Students need
to construct a complex knowledge network based onmultiplicative
rather than on additive relations; new symbols and representations
are introduced that need to be understood and coordinated; the
notion of the unit and of the arithmetical operations need to be
reconceptualised; and there are several conceptually distinct
meanings attached to rational numbers that, again, need to be
understood and coordinated. These include the part-whole aspect
of fraction, fraction as a quotient, fraction as a multiplicative
operator, fraction as a ratio, and fraction as measure. The latter is
closely related to an aspect that is particularly relevant to this
special issue: Rational numbers are numbers, that is, abstract en-
tities that take their meaning within a number system, through
their relations with other numbers and in accordance with certain
principles and rules, such as the basic laws of arithmetic (e.g.,
Kilpatrick, Swafford, & Findell, 2001). There is a huge difference
between abstract and concrete conceptualizations of number (both
historically and developmentally). Indeed, “three apples are more
than two apples” is not the same as “3 is bigger than 2”; similarly,
“half of an apple is more than one quarter of the apple” is not the
same as “1/2 is bigger than 1/4”. The latter, abstract, conceptuali-
zation is far more challenging (Kilpatrick et al., 2001; Ni & Zhou,
2005). All five articles of this special issue address precisely this
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abstract conceptualization of number: Participants are asked to
compare decimals (Kelley & Rittle-Johnson) and fractions (DeWolf
& Vosniadou, McMullen et al., 2015; Torbeyns et al., 2015); and
place fractions on the number line (Torbeyns et al., 2015). It is only
in this abstract context that numbers can be understood as densely
ordered (McMullen et al., 2015). Furthermore, this kind of
abstraction is required in order to eventually conceptualize rational
numbers as a unified number system (Kilpatrick et al., 2001), which
is necessary in order to assign more than one type of numbers to
real variables and judge the effect of operations with unknown
numbers (Van Hoof et al., 2015).

Moss's (2005) summary illustrates nicely two main points that
are relevant to the articles of this special issue: Rational numbers
are difficult for students, because a lot of new material has to be
learnt, and the content is highly complex (even without consid-
ering the vast variety of related applications). Furthermore, prior
knowledge and experience with natural numbers is not always
supportive of rational number learning, a phenomenon noticed,
studied, and reported by many mathematics education researchers
(see the studies cited in Kilpatrick et al., 2001; Moss, 2005; Ni &
Zhou, 2005; Vamvakoussi, Vosniadou, & Van Dooren, 2013), far
before the term “whole number bias” was coined by Ni and Zhou.
Thus, Torbeyns, Schneider, Xin, and Siegler (2015) are right in
arguing that natural number knowledge interference is one, but not
the only source of difficulty in rational number learning e and let
me add that the brief summary above indicates that the picture is
even more complicated than depicted in their article. There is no
doubt, however, that natural number knowledge interference is
one major source of conceptual difficulties.

3. Theoretical framing of the contributions

The idea of a whole or natural number bias (hereafter, natural
number bias) is closely related to the problem of restructuring a
prior knowledge base that cannot adequately support a new, and in
many ways incompatible, number perspective (Ni & Zhou, 2005;
Vamvakoussi, Van Dooren, & Verschaffel, 2012); it is thus related
to conceptual change perspectives on the development of rational
number knowledge.With the exception of Torbeyns et al. (2015), all
contributions are framed in conceptual change terms, focusing on
the differences between natural and rational numbers, and study-
ing the complex interactions between students' prior knowledge
and the information about rational numbers coming from in-
struction. Since my view on the matter is expressed in detail else-
where (e.g., Vamvakoussi& Vosniadou, 2010), and since conceptual
change perspectives are also addressed by the contributors, I will
focus on the theoretical position of Torbeyns et al. who advocate a
different, albeit not incompatible idea. Specifically, Torbeyns et al.
focus on the similarities, rather than the differences, between
natural and rational numbers. Adopting the integrated theory of
numerical development (Siegler, Thompson, & Schneider, 2011),
they in fact address the question “what makes natural and non-
natural numbers members of the same category, the category of
number?” Their answer is “magnitude”. Thus numerical develop-
ment is described as a process of progressively broadening the class
of numbers that are understood to possess magnitudes, are subject
to ordering, and can be assigned specific locations on number lines.
Siegler et al. made two assumptions: a) fractions are crucial for
overall mathematical understanding, and b) understanding mag-
nitudes is crucial for understanding fractions, which is also tested-
and supported-by Torbeyns et al. in the present cross-cultural
study.

Let me start by saying that I find the idea of exploiting the deep
similarities between natural and rational numbers valuable,
particularly in terms of educational implications (Vamvakoussi

et al., 2013). In fact, this idea has been systematically explored by
several mathematics education researchers (e.g., Behr, Harel, Post,
& Lesh, 1994; Sophian, 2004; Steffe & Olive, 2010). It is also hard
to disagree that magnitude is an essential part of the meaning of
number in an abstract context. Yet there is another, possibly more
fundamental, commonality, between natural and rational numbers,
namely the notion of the unit. The use of the unit differentiates
between judgments regarding unquantified and quantified quan-
tities and is thus instrumental for the development of number
concepts (Sophian, 2008). The ability to choose or construct
appropriate units is considered fundamental for the development
of rational number concepts (Harel& Confrey,1994), notably for the
understanding of fraction as measure. And although this fact is
often overlooked, the notion of the unit is also essential for natural
numbers as well (e.g., Sophian, 2004).

Number magnitude depends crucially on the unit. I believe that
this fact is reflected in the findings of Torbeyns et al. (2015). Indeed,
one might ask, why is fraction magnitude estimation on the
number line (particularly on the 0e5 number line) more difficult
than fraction comparisons, and a better predictor of overall math-
ematical achievement? I would argue that this is because it requires
understanding of the role of the unit. This is essential in concrete
contexts, such as measurement (Nunes & Bryant, 1996); and more
so in abstract ones, such as placing a fraction on the number line. I
would not be surprised if several students in the sample of Tor-
beyns et al. treated the length corresponding to 5 as the unit (see
also Ni, 2000).

This said, it is valuable to have research-based evidence that
fraction understanding correlates with overall mathematical
achievement. One possible explanation of this finding is the
pervasiveness of rational number ideas in the curriculum. Rational
numbers are an important part of what Vergnaud (1994) termed
“multiplicative conceptual field” that includes notions ranging from
basic ones such as multiplication and division, to highly sophisti-
cated ones such as n-linear functions. The elements of the multi-
plicative conceptual field are interrelated, and there is wide variety
of mathematical concepts that relate to this field within as well as
outside school settings. For instance, proportionality, geometrical
similarity, and probability all pertain to the multiplicative concep-
tual field (see Lamon, 2006, for a detailed discussion). Acknowl-
edging the interconnections between rational number ideas and a
wide variety of mathematical notions, many of which are taught at
school, one can expect that fraction understanding is important for
students' mathematical achievement in different countries
(Torbeyns et al., 2015) e and arguably for students' achievement in
physics and chemistry, as well.

I would agreewith Torbeyns et al. (2015) that conceptual change
perspectives focus on a particular (and indeed limited) aspect of the
development of rational number knowledge. However, such per-
spectives (notably, the framework developed by Vosniadou and
colleagues, and presented by DeWolf & Vosniadou, 2015) provide
detailed accounts of the basis of the natural number bias; pre-
dictions of what happens when prior knowledge interacts with
new information-and these predictions become more refined (e.g.,
Van Hoof, Vandewalle, Verschaffel, & Van Dooren, 2015), as there is
now a substantial body of prior research; descriptions and expla-
nations of students' conceptions and how these change (or do not
change) with instruction (e.g., Kelley & Rittle-Johnson, 2015;
McMullen, Laakkonen, Hannula-Sormunen, & Lehtinen, 2015). In
fact, intense research from this perspective has put forward several
aspects of the natural number bias, which I will discuss in the
following section.

The integrated theory, on the other hand, has a more ambitious
goal, is a more recent attempt, and thus has more questions to
address, in particular how do students come to conceptualize
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