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ABSTRACT

Children often struggle to gain understanding from instruction on a procedure, particularly when it is
taught in the context of abstract mathematical symbols. We tested whether a “concreteness fading”
technique, which begins with concrete materials and fades to abstract symbols, can help children extend
their knowledge beyond a simple instructed procedure. In Experiment 1, children with low prior
knowledge received instruction in one of four conditions: (a) concrete, (b) abstract, (c) concreteness
fading, or (d) concreteness introduction. Experiment 2 was designed to rule out an alternative hypothesis
that concreteness fading works merely by “warming up” children for abstract instruction. Experiment 3
tested whether the benefits of concreteness fading extend to children with high prior knowledge. In all
three experiments, children in the concreteness fading condition exhibited better transfer than children
in the other conditions. Children's understanding benefits when problems are presented with concrete
materials that are faded into abstract representations.

© 2014 Elsevier Ltd. All rights reserved.

1. Introduction

When we teach children a procedure for solving a mathematics
problem, we not only want them to learn the procedure and apply
it correctly, but also want them to understand why the procedure
works. Indeed, a key question in the development of children's
mathematical thinking is how we can help children gain under-
standing of underlying concepts from the procedures they are
taught, so they can transfer those procedures beyond the specific,
instructed context. Unfortunately, children struggle to gain con-
ceptual understanding from a procedure, especially when it is
taught in the context of abstract mathematics symbols (e.g., McNeil
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& Alibali, 2000; Rittle-Johnson & Alibali, 1999). Because under-
standing abstract symbols and manipulating them in meaningful
ways are critical aspects of learning mathematics, the use of ab-
stract symbols during instruction cannot and should not be avoided
altogether. However, relatively minor changes to when and how
abstract symbols are introduced during instruction may improve
children's ability to extend their knowledge beyond the instructed
procedure.

In the present study, we tested one hypothesized method for
helping children extend their mathematical knowledge beyond a
simple, instructed procedure: beginning with concrete examples
and then explicitly fading to the abstract symbols. This “concrete-
ness fading” technique is hypothesized to facilitate conceptual
understanding by fostering knowledge that is both grounded in
meaningful concrete contexts, and also generalized in a way that
promotes transfer (e.g., Fyfe, McNeil, Son, & Goldstone, 2014;
Goldstone & Son, 2005).

Students spend a lot of time learning and practicing mathe-
matical procedures. For example, in representative eighth-grade
math classrooms, students spent approximately two-thirds of in-
dividual work time solving problems using an instructed procedure
(Hiebert et al, 2003). Unfortunately, students typically just
memorize the procedure and rotely apply it as instructed. This leads
to misunderstandings and failure to transfer the procedure
appropriately. Indeed, children rarely benefit from procedural
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instruction, and correct transfer and conceptual understanding are
low as a result (e.g., Matthews & Rittle-Johnson, 2009; Perry, 1991).
For example, children often make “buggy” subtraction errors when
they try to follow rules that they do not understand, such as
changing a 7 in the tens place into a 5 in order to “borrow” two
one's (e.g., Fuson et al., 1997). Similarly, children who learn a pro-
cedure for solving math equivalence problems with a repeated
addend (3 + 4 + 5 = 3 + __) often fail to correctly transfer that
procedure to problems without a repeated addend
(3+4+5=2+ __; McNeil & Alibali, 2000).

One factor contributing to children's difficulties gaining con-
ceptual understanding from procedural instruction may be pre-
mature reliance on abstract symbols. In fact, studies have shown
that abstract symbols can interfere with understanding because
they elicit the use of rote instructed procedures at the expense of
informal, logical reasoning (e.g., Koedinger & Nathan, 2004). For
example, children aged 9—15 were better able to perform math
calculations when presented in a concrete context (e.g., “If I pur-
chase four coconuts and each coconut costs $35, how much do I
owe you?”) than when presented in an abstract, symbolic context
(e.g., 35 x 4 = _; Carraher, Carraher, & Schliemann, 1985). In the
concrete context, children used mental calculations of relevant
quantities, whereas in the abstract context, children tried (unsuc-
cessfully) to employ school-taught procedures. More generally,
research suggests that abstract symbols can lead to inflexible
application of learned procedures (McNeil & Alibali, 2005) and
illogical errors (Carraher & Schliemann, 1985), neither of which
indicate deep, transferable knowledge of mathematics.

One solution for helping children gain conceptual understand-
ing from procedural instruction is to use concrete materials during
instruction (e.g., blocks, balance scale). Such materials have several
potential benefits. For example, concrete materials can activate
intuitive, real-world knowledge during learning (Baranes, Perry, &
Stigler, 1989; Kotovsky, Hayes, & Simon, 1985), enable learners to
construct their own knowledge of abstract concepts (Brown,
McNeil, & Glenberg, 2009), and prompt physical action, which
has been shown to improve understanding and retention (e.g.,
Martin & Schwartz, 2005). However, the mere use of concrete
materials does not guarantee success (McNeil & Jarvin, 2007).
Indeed, although concrete materials may facilitate initial under-
standing, learners often struggle to apply that understanding
beyond the instructed context. For example, numerous studies have
shown that concrete materials hinder transfer to new, dissimilar
situations (e.g., Gentner, Ratterman, & Forbus, 1993; Goldstone &
Sakamoto, 2003; Kaminski, Sloutsky, & Heckler, 2008; Son, Smith,
& Goldstone, 2011).

A promising alternative to using concrete materials alone to
support conceptual understanding is to use them in combination
with abstract symbols in a fading sequence. Specifically, many
theorists recommend beginning with concrete examples and
slowly fading to the more abstract (e.g., Bruner, 1966; Fyfe et al.,
2014; Gravemeijer, 2002; Lehrer & Schauble, 2002). For example,
Bruner (1966) proposed that new concepts and procedures should
be taught using three progressive forms: (1) an enactive form,
which is a physical, concrete model, (2) an iconic form, which is a
graphic or pictorial representation, and finally (3) a symbolic form,
which is an abstract, symbolic representation. The goal is to pro-
mote a rich, grounded understanding from instruction that is tied
to conventional abstract symbols. In the present study, we use
“concreteness fading” to refer to the specific three-step progression
by which the physical instantiation of a concept becomes increas-
ingly abstract over time.

Recently, McNeil and Fyfe (2012) provided support for
concreteness fading. Undergraduates learned modular arithmetic
using abstract symbols (e.g., pictures of solid black-on-white

shapes), concrete examples (e.g., pictures of measuring cups), or a
concreteness fading progressing. In the fading condition, the con-
crete elements and abstract elements were explicitly linked with an
intermediate instantiation. Specifically, after learning with the
concrete measuring cups, participants were told that the measuring
cups would be represented by simpler symbols: I, II, IIl. After
learning via Roman numerals, participants were told that any
symbols could be used, and they were presented with the abstract
elements. Students then completed a transfer test immediately, one
week later, and three weeks later. Importantly, undergraduates in
the fading condition exhibited the best transfer performance at all
three time points.

Research by Goldstone and Son (2005) also provided some
initial support for the “fading” hypothesis. Undergraduate students
learned the scientific principle of competitive specialization via
computer simulations that differed in their perceptual concrete-
ness. The elements in the display either remained concrete (e.g.,
realistic ants and fruit), remained abstract (e.g., simple black dots
and green shapes), switched from concrete to abstract, or switched
from abstract to concrete. Going from concrete to abstract resulted
in the most optimal transfer.

Despite these promising results, more research is needed.
Neither of these studies included physical, concrete objects during
the enactive stage as originally recommended by Bruner (1966).
Further, neither progression fully explored the scope of abstract-
ness. The concrete and abstract elements were both relatively
concrete (i.e., pictorial images); the abstract elements were simply
stripped of perceptual detail. It remains unclear if concreteness
fading can improve understanding of conventional abstract sym-
bols, of which learners may already have some misunderstanding.
Finally, this prior research was limited to undergraduate students
learning upper-level mathematical and scientific concepts. One
study tested the benefits of concreteness fading for teaching frac-
tions, but was limited to middle school students with mathematics
disabilities. Butler, Miller, Crehan, Babbitt, and Pierce (2003)
compared a full concrete-representational-abstract (CRA)
sequence to a representational-abstract (RA) sequence. The CRA
group used concrete manipulatives for the first few lessons, while
the RA group used representational drawings. Students in the CRA
group exhibited higher learning than students in the RA group.

Importantly, the “fading” method has yet to be applied in
mathematics with typically-developing children in elementary
school learning a specific procedure. Further, no study to date has
tested the full three-stage fading method and included a rigorous
control in which learners are exposed to the three stages in the
reverse order. Finally, no study to date has explicitly examined
whether the benefits of concreteness fading extend to learners with
varying prior knowledge of the target concept. We addressed these
gaps in the literature by examining the fading hypothesis in the
context of children learning a procedure to solve math equivalence
problems.

Math equivalence is the idea that two sides of an equation
represent the same quantity, and it is critical to developing alge-
braic thinking (e.g., Falkner, Levi, & Carpenter, 1999; Knuth,
Stephens, McNeil, & Alibali, 2006). Thus, it is an educationally-
relevant and developmentally-appropriate topic for elementary
school students. For example, the Common Core State Standards
have included math equivalence as a first-grade standard (e.g.,
www.corestandards.org/ Math/Content/1/OA/D/7), and numerous
studies suggest that children in first-through third-grade can learn
to understand math equivalence (e.g., Baroody & Ginsburg, 1983;
Davydov, 1969/1991; Jacobs, Franke, Carpenter, Levi, & Battey,
2007).

This domain is an apt domain in which to investigate whether
concreteness fading can help children extend their knowledge
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