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Abstract 

The problem of spatial approximation becomes very important in the solution of neutronics problems with coarse spatial grids, in particular, 
in the calculations of fuel assemblies of fast reactors (for instance, BN-800 and BN-1200 reactors) with computational cell in the form of 
hexagonal prism. 

“Weighted diamond difference” (WDD) schemes are the most widely used among the finite difference schemes for the neutron and 
gamma-ray transport equation solution. They are efficient from the viewpoint of ease of their implementation and associated CPU time 
expenditures. However, some drawbacks of these schemes are manifested when they are applied to solve the above described problems. 
Diamond difference scheme (DD) having second-order approximation (the best for this class of schemes) does not possess the properties of 
positivity and monotonicity. This is the reason why negative values and non-physical oscillations are often present in the solutions obtained. 
“Step” scheme (St), which is free from the disadvantages of the diamond difference scheme, has accuracy of only the first order. In connection 
with the need in high-accuracy calculations its use appears to be inefficient. 

There exist algorithms for correction of negative values, as well as adaptive ( AWDD ) schemes aimed both at the reduction of the level 
of oscillations and at the obtaining positive solutions. However, these algorithms negatively affect the order of approximation, and schemes 
of the first – second order of accuracy are discussed in such cases. Besides that, for adaptive schemes there exists the problem of correct 
selection of parameters of the scheme. 

The evident way to escape such situation with simultaneously enhancing quality and accuracy of the calculation is to select a fine mesh. 
In case of calculation of fuel assemblies of fast reactors spatial grid represents an arrangement of rectangular prisms with regular hexagons 
forming their bases (in such cases reference is made to HEX-Z -geometry). Therefore, hexagonal cells can be divided into rhomb-shaped 
cells (three rhombs per one hexagon; 12 rhombs per one hexagon, etc.). Diamond scheme is applied for the grids consisting of rhombs thus 
obtained. Because of the smaller cell size as compared with original cell size, the drawbacks inherent to this scheme will not be pronounced. 
Triangular grid can also be used. 

A different approach for the solution of the above indicated problem is to develop computational methods with enhanced order of accuracy 
without increasing the number of computational points. Nodal method is one of such methods. Expansion of unknown function inside the 
node (elementary volume with constant properties) in basis functions with subsequent calculation of expansion moments constitutes the basis 
of any nodal method. 

Nodal S N -method in HEX-Z geometry will be discussed in the present paper. 
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Let us examine stationary neutron transport process 
described by linear Boltzmann equation. After angular and 

energy discretization we obtain: 
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Fig. 1. Computational cell in HEX-Z -geometry. 
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Let us examine the computational cell with width across 
flats �x and height �z k as shown in Fig. 1 simulating one of 
the altitudinal sections of fuel assembly of fast reactor core: 
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Let us choose for the sake of certainty angular direction 
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> 0. Integration of Eq. (1) on variables y and z within 

the limits of the cell results in the following one-dimensional 
equation: 
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L (x ) in Eq. (2) is the neutron leakage having radial com- 
ponent L r (x) and axial component L z (x) combined in ( 1 ) as 
follows [1] : 

L (x ) = L r (x) + y b (x ) L z (x ) 

L r (x) = 

{ 

μu �u+ (x) −μv �v+ (x) √ 

3 
, x > 0 

μv �v+ (x) −μu �u−(x) √ 

3 
, x < 0 

;

L z (x) = ξ [ �z+ 

(x) − �z−(x) ] / �z k . 

Taking into account the boundary condition �( �x/ 2 ) = 

�x 
in we obtain the followig solution of Eq. (2) : 

y b (x)�(x) = 

�x 

2 

√ 

3 

exp 

{
− �t 

μx 

(
�x 

2 

+ x 

)}
�x 

in 

+ 

1 

μx 

∫ x 

− �x 
2 

[ y b (t ) Q(t ) − L(t ) ] 

× exp 

{
−�t 

μx 
( x − t ) 

}
dt . (3) 

Now let us use polynomial expansion of neutron flux and 

the source as follows: 
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Substitution of ( 4 ) in ( 3 ) allows obtaining expression for 
expansion moments and substitution of x = �x/ 2 in ( 3 ) gives 
expression for flux �x 

out on the outcoming plane. 
Applying similar technique we obtain expressions for func- 

tions �(u) and �(v) where variables u and v correspond to 

the coordinate axes shown in Fig. 1. 
When coordinate system is rotated by the angle α trans- 

fer equation in new coordinates (x ́,y ́,z ́) is reduced to the 
following form: ( 
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i.e. to Eq. (1) with following new direction cosines: 

μ′ = μ cos α + η sin α, 

η′ = −μ sin α + η cos α. 

Thus, it is sufficient to make substitution ( μ, η) → ( μ′ , η′ ) 
in expressions ( 3 ) and ( 4 ) for αu =π /3 and αv =2 π /3 . 

For variable z we have: 
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