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Abstract 

The intensity of the flow accelerated corrosion (FAC) process depends on a great number of parameters with a complicated effect on 
each other. The use of an intellectual neural network (INN) to solve the FAC prediction problem makes it possible to estimate the mutual 
effects from all the factors involved, to identify the essential properties of the information obtained, and, ultimately, to improve the accuracy 
of prediction without determining the whole range of dependences among a great deal of factors on which the FAC process depends. An 
approach is proposed to the creation and training of an optimal neural network for the NPP piping FAC rate prediction problem. Matlab 
software was used to develop an intellectual neural network to address the problem of the wall thinning prediction for a straight pipe with 
the VVER NPP single-phase secondary fluid. The network has been trained using an elastic back propagation algorithm, a number of the 
NS configurations have been studied, and the findings have been analyzed. 

A conceptual framework has been built for the intellectual system in the form of three NS types: a replicative NS, a Kohonen self- 
organizing NS, and a back-propagation NS. 
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Introduction 

Practically all components of the nuclear power plant 
(NPP) steam-water line’s pipelines and equipment, manufac- 
tured from perlite and low-alloy steels, are prone to flow ac- 
celerated corrosion (FAC). FAC processes occur under the 
action of hydrodynamic factors (the erosive component of 
damage) and electrochemical oxidation of the surface (cor- 
rosive component). The FAC effects manifest themselves in 

the form of thinning and, ultimately, “before-leak” failures of 
the power equipment components. A great diversity of the 
equipment metal damage zones and forms is explained by 
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differences in the geometry, phase states, thermal- and hydro- 
dynamic performance, and fluid water-chemistry. 

Therefore, a vital task is to predict the FAC rate to optimize 
the NPP equipment monitoring scope and to avoid critical 
situations [1,2] . 

Globally, the most common FAC prediction technique is 
based on empirical data. Empirical models lack any physical 
sense but provide for a satisfactory description of experimen- 
tal data that characterize the properties of real objects. Gener- 
alization and analysis of long-term operating experience and 

statistical data on the NPP damage rate, as well as investiga- 
tion of the FAC processes and regularities in metals have led 

to the development of dedicated codes in the USA ( CHEC- 
WORKS ), Germany ( WATHEK ), France ( COMSY ) and Russia 
( EKI-02 , EKI-03 ). The most well-known empirical model is 
the Chexal–Horowitz model [2] used in the CHECWORKS 

code. It employs an extensive array of experimental and lab- 
oratory research data for the quantitative estimation of the 
FAC influencing factors: 

FAC rate = F 1 ( T ) · F 2 ( AC ) · F 3 ( MT ) · F 4 ( O 2 ) · F 5 ( pH ) 

· F 6 ( G ) · F 7 ( α) · F 8 ( H ) , 
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where Т is the temperature; AC is the alloy composition; MT 

is the mass transfer; O 2 is the oxygen effect; pH is the pH 

effect at a given temperature; G is the geometry; α is the 
steam quality; and H is the hydrazine effect. 

However, no prediction based on empirical models pro- 
vides for acceptable results. For instance, in the semi- 
empirical Chexal–Horowitz model built with regard for the 
dependence among the factors defined implicitly with the use 
of empirical tables [2] , the major uncertainty sources are the 
initial thickness of the component wall, the alloy components 
not used in the model, the actual steam quality in the two- 
phase flow, uncertainties of the water chemistry, and others. 

The only objective source of information on the state of a 
pipe component is monitoring data. Therefore, it is suggested 

that a FAC process model based on neural networks should be 
used for prediction. Neural networks have proved themselves 
to perform well in simulation of systems and processes the 
internal constraints in which have been either understudied or 
interact in a complicated way [3–5] . 

A great number of parameters that define the FAC rate have 
a complex effect on each other. The use of neural networks 
to address the FAC prediction problem makes it possible to 

assess the mutual effects of all the factors involved, to iden- 
tify the essential properties of the information obtained, and, 
ultimately, to improve the accuracy of prediction. The gen- 
eralization and abstraction capability of an artificial neural 
network helps predict correctly the FAC rate without deter- 
mining the whole range of dependences among a great deal 
of factors on which the FAC process depends. But the real 
model is complex and involves many input variables. 

The paper suggests an approach to the creation and train- 
ing of the optimal artificial neural network for solving the 
problem of the NPP piping FAC rate prediction. 

Application of neural networks for the FAC process 
prediction 

A network is the model of a process. Its major attributes 
are structure, number of layers, neuron type, input and output 
values, and learning algorithms. The selection of the neu- 
ral network attributes depends on the amount and quality 

of experimental data available for the network training. The 
training framework includes ultrasonic thickness measurement 
results, the metal’s chemical composition, the coolant water 
chemistry, flow temperature and velocity, etc. (e.g., CHEC- 
WORKS model [2] ). And no prior data processing and deter- 
mination of respective dependences for the particular factor 
is required. However, an increase in the prediction accuracy 

requires data to be filtered based only on thinning data, since 
the FAC process causes wall thinning, while thickening is 
caused by another process (transport of corrosion products), 
which is not expected to add more noise to the predicted 

process. 
For the FAC prediction, there is no sense in building a 

versatile network that takes into account the effects from all 
potential input factors. Such approach requires the develop- 
ment of an intricately structured network with a great number 

of layers and neurons and a greater volume of learning sam- 
pling to obtain the satisfactory result. For each geometrical 
type of the piping components (straight pipe, bend, tap and 

so on), it however makes sense to build a separate network 

to obtain a simpler structure of the neural network and to 

improve the model accuracy. 

NS model for the FAC rate prediction 

The training of a neural network for the FAC rate pre- 
diction requires data influencing the predicted value to be 
supplied to the network input. The output value, as defined 

for the problem, will be a characteristic of the FAC rate. The 
amount of the piping wall thickness deviation from the rated 

value has been chosen as such characteristic ( S ). 
The inputs to be used will be the factors that influence the 

FAC process [1,2] : fluid temperature T ; coolant flow velocity 

V ; oxygen content in the coolant O 2 ; fluid’s pH; mass content 
of chromium in material Cr; mass content of molybdenum in 

material Mo; mass content of copper in material Cu; inner 
diameter of the piping D ; geometry of the piping component 
G ; content of the amine (ammonia, ethanolamine, morpholine) 
used; piping operating time in years t oper . 

The larger is the input vector, the more complex shall be 
the NS architecture that handles this set. The more complex 

is the network configuration, the more time is needed to train 

the network and the more likely difficulties to occur in the 
training process. 

An indispensable parameter of prediction problems is the 
time span for which the prediction is performed, t р red . There- 
fore, the NS model we will get has the form of a “black box”
( Fig. 1 ). 

A sigmoidal (or logical) function of the form F ( x ) = 1 / 
(1 + exp(–x )) (see Fig. 2 ) was used as the activation function. 

A back propagation algorithm has been selected for train- 
ing. This is a systematic approach to the training of multilayer 
artificial neural networks that enables a spatial construction of 
“approximation” weights for the path calculated by steepest 
descent method. The computational power of the algorithm 

consists of the efficiency of the calculation of the network 

function’s partial derivatives F ( w , x ) for all components of 
the adjusted vector of weights w for the given input vector х . 

Fig. 1. A model of an artificial neural network for the prediction problem 

solution. 
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