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Abstract 

The neutronic code CORNER is based on the S N discrete ordinates method [1] and the P M 

scattering cross-section approximation. It is 
intended for high-precision deterministic neutronic calculations of fast-neutron reactors and can be used to solve two types of steady- 
state neutron transport and gamma quanta problems in a 3D hexagonal geometry: K eff problems (homogeneous) and source problems 
(inhomogeneous). 

The code is developed in the Fortran language and has a modular structure. Its key modules are a module for the preparation of neutron 
constants in the ANISN format; a geometric module containing a description of the core’s loading map and fuel assembly types, including 
their axial meshing and material composition; a module for preparing angular quadrature sets; an input data module containing the parameters 
of the approximation used and the control parameters; a neutronic calculation module and a calculation data processing module. 

The Directional Theta-Weighted ( DTW ) difference scheme [2] has been built to approximate the spatial dependence. It has advantages 
over the DD (Diamond Difference) scheme broadly used in coarse-mesh problems. 

The energy dependence is represented by multigroup approximation. The angular variable is discretized by introduction of the angular 
quadrature set. Quadrature sets can be also defined by the user. 

An iterative solution process is used, including external iterations for the fission source and internal iterations for the scattering source. 
The paper presents the results of a cross-verification against the Monte Carlo MMK code [3] and on a model of the BN-800 reactor core. 
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Problem definition 

The steady-state distribution of neutrons is described by 

the linear Boltzmann equation [4] , which, in a multigroup 

approximation, has the form 
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where ϕ 

g ( r , �) is the neutron flux density at the point r 
in the direction � in the group g ; �g ( r ) is the scalar neu- 
tron flux at the point r in the group g ; �t 

g ( r ) is the full 
macroscopic cross-section of interaction; �s 

g ′ → g ( r , �′ ��) is 
the macroscopic cross-section of the neutron scattering from 

group g 

′ into group g ; χg is the fission neutron spectrum; G 

is the total number of energy groups; ν�f 
g ′ is the number of 

fission neutrons generated in a single fission event; and S 

g ( r ) 
is the distribution function of internal sources. 

The CORNER code supports the solution of an inhomoge- 
neous problem and a conditional-critical problem (with zero 

boundary conditions, zero internal sources and the 1/K eff mul- 
tiplier preceding the fission integral). 

S N 

P M 

approximation 

To calculate the collision integral, it is necessary to define 
the angular quadrature ( S N 

approximation of the discrete or- 
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dinates method) and expand the scattering indicatrix in series 
of Legendre polynomials ( P M 

approximation). 
The variation range of angular variables is a single sphere 

of directions �= ( θ , φ) where θ is the polar angle, and φ is 
the azimuthal angle. In the S N 

approximation, this range is 
substituted by a set of discrete directions �m 

, each of which 

is matched by a point on the sphere surface and a surface el- 
ement of the area w m 

. The surface elements w m 

play the role 
of angular quadrature weights in the computation of integrals 
in expression ( 2 ). The total number of discrete directions is 
equal to 2 

d N (N + 2 ) /8 where d is the geometrical dimen- 
sion. 
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The CORNER code supports two types of quadrature sets: 
Level Symmetric ( LQ N 

) and Legendre-Chebyshev ( P N 

–T N 

) 
[5] . The angular quadratures of the LQ N 

set are symmetri- 
cal relative to the rotation about each axis but are limited: 
when N > 20, negative quadrature weights occur. The P N 

–
T N 

set combines the Gauss quadratures for the polar variable 
and the Chebyshev quadratures with equal weights for the 
azimuthal variable. 

With regard for the expansion of the scattering indicatrix 

in series of Legendre polynomials, the collision integral has 
the form 
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where �s,l 
g ′ → g ( r ) is the l th moment of the scattering cross- 

section; P l ( ξ ) is the 1st order Legendre polynomial; and P l 
k ( ξ ) 

is the associated Legendre polynomial. The flux angular mo- 
ments have the form 
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Finite-difference schemes 

The computational domain consists of regular hexago- 
nal prisms which simulate the reactor core FAs with a 
pitch of 
x . Let us consider the computational cell [ x i −1/2 , 

Fig. 1. A computational cell in the XY plane and the neutron transport di- 
rection for the case μx 

m > 0, μu 
m > 0, μn 

m > 0. 

x i + 1/2 ] ×[ y b –( x ), y b + 

( x )] ×[ z i −1/2 , z i + 1/2 ] (see Fig. 1 ) with the 
center at ( x i , y j , z k ), where 

y b±( x ) = y j ∓ | x − x i | − 
x √ 
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The balance equation for the zero moments of the angular 
flux in the cell and on the faces is obtained by the integration 

of Eq. (1) in a difference cell for the fixed direction m (the 
index of group g is omitted for simplicity): 
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