
For example, increased antioxidant
enzyme activity has also been observed
[8], and further studies are required to
determine if this beneficial phenotype is
as universal as the improved salt and
drought responses, augmented plant bio-
mass, and yield observed in a plethora of
other agriculturally important crops.

The ability to dramatically improve both
monocot and dicot crops through aug-
mented H+-PPase expression is now
self-evident. However, to fully harness this
know-how, and leverage it with other tech-
nologies, a mechanistic rationale for these
changes in a variety of crops is required.
Given the recent advances, it is tempting to
now speculate that H+-PPase upregulation
specific to both phloem and heterotrophic
tissues could have additive effects that fur-
ther enhance crop yield.
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Modulation of the mammalian target
of rapamycin (mTOR), the principal
regulator of cellular homeostasis,
underlies the biological effects of
engineered nanoparticles,  including
regulation of cell death/survival and
metabolic responses. Understand-
ing the mechanisms and biological
actions of nanoparticle-mediated
mTOR modulation may help in
developing safe and efficient nano-
therapeutics to fight human disease.

Nanoparticles Modulate
Mammalian Target of Rapamycin
(mTOR) Signaling
Engineered nanoparticles have significant
biomedical potential due to their unique
physicochemical properties afforded by
small size and large surface area. Synthe-
sized by various top-down or bottom-up
approaches, they are classified as soft
(e.g., lipid- and polymer-based) or hard
(e.g., metal, metal oxide, quantum dots,
carbon, and ceramic) nanoparticles. Soft
nanoparticles are mainly used for drug
delivery, while hard nanoparticles can
serve as diagnostic agents or therapeutics
that directly interfere with the pathological
process. In contrast to diagnostic and
drug-delivery uses, the direct therapeutic
potential of nanoparticles has only rarely
been translated into a clinical setting. This
mainly stems from a considerable com-
plexity of nanoparticle interaction with
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living cells, resulting in uncertainties con-
cerning the benefits and side-effects. To
overcome this, we require a better insight
into the interaction of nanoparticles with
intracellular signaling pathways regulating
cell growth, proliferation, survival, and
death, as well as specific cellular func-
tions. Recent research demonstrated that
various nanoparticles modulate the acti-
vation of the serine/threonine kinase
mTOR [1–12], an evolutionarily conserved
master regulator of cell/organismal
homeostasis that integrates diverse envi-
ronmental cues (nutritional and hormone/
growth factor-mediated) to control cell
physiology [13]. Dysregulation of mTOR
signaling underpins aging and plethora
of diseases, and mTOR modulators (e.
g., rapamycin, active-site mTOR inhibi-
tors, and biguanides) are candidates for
the therapy of cancer, metabolic, inflam-
matory, cardiovascular, and neurological
disorders [13]. Herein we highlight recent
findings that nanoparticles exert their bio-
logical effects at least in part via mTOR
modulation (Box 1).

mTOR Inhibition by Nanoparticles
Most of the investigated nanoparticles
inhibited mTOR activation in various types
of both cancer and normal cells (Table 1).
The treatment with nanoparticles reduced
the phosphorylation of mTOR [1–10] and
the mTORC1 substrate S6K [1–6,9,10],
thus indicating a decrease in mTORC1
catalytic activity. In accordance with the
crucial role of mTORC1 in cell homeostasis
and autophagy inhibition, its suppression
by nanoparticles caused cell dysfunction
and death, accompanied by an increased
autophagic response [1–9]. Interestingly,
while autophagy supports cell survival by
removing damaged macromolecules and
organelles, as well as by recycling macro-
molecules during energy deficit, autophagy
induced by mTOR-inhibiting nanoparticles
apparently contributed to cell death [1,3–
6,9]. This is consistent with the findings that
induction of autophagy by mTOR-inhibiting
drugs frequently results in cell cycle arrest
and cell death [13]. Although inactivated
during autophagy initiation, mTORC1 is

Box 1. Regulation of the mTOR Pathway by Biological Stimuli and Nanoparticles

mTOR serves as the catalytic core of two distinct complexes, mTOR complex 1 (mTORC1) and 2 (mTORC2),
which differ in their composition (mainly defined by the adaptors Raptor and Rictor, respectively), down-
stream targets, and sensitivity to allosteric mTOR inhibitor rapamycin. Binding of growth factors and
hormones to receptor tyrosine kinases (RTK) activates mTOR through phosphoinositide 3-kinase (PI3K)-
dependent activation of AKT (Figure I), which relieves tuberous sclerosis complex (TSC1/2)-mediated
inhibition of the mTOR stimulator Ras homolog enriched in brain (RHEB) (a TSC1/2-independent pathway
also exists). RTK-mediated activation of extracellular signal-regulated kinase (ERK) through RAS–RAF–MEK
cascade, as well as activation of Ras-related GTPases (RAGs) by amino acids, also stimulate mTORC1
activity (Figure I). Activation of AMP-activated protein kinase (AMPK) by energy deficit inhibits mTORC1 via
TSC1/2-dependent and -independent mechanisms, while ROS modulate mTOR activity in an AKT- or
AMPK-dependent manner (Figure I). Through phosphorylation of eukaryotic translation initiation factor 4E-
binding proteins (4E-BPs) and p70 ribosomal S6 kinases (S6K), and by upregulating the expression of sterol
regulatory element-binding proteins (SREBPs), mTORC1 stimulates anabolic processes, such as protein,
nucleotide, and lipid synthesis, and regulates energy metabolism to fuel cellular growth, proliferation, and
survival (Figure I). Simultaneously, by inhibiting Unc-51-like autophagy-activating kinase 1 (ULK1), mTORC1
suppresses autophagy, a catabolic process that recycles intracellular material, and can either increase or
decrease cell survival in a context-dependent manner (Figure I). Much less is known about the regulation and
function of rapamycin-insensitive mTORC2, which regulates cytoskeletal organization, energy metabolism,
and cell survival via activation of AGC kinases AKT, protein kinase C/, and serum/glucocorticoid regulated
kinase 1 (SGK1) (Figure I). Nanoparticles (NP) inhibit mTORC1 through suppression of AKT and activation of
AMPK (Figure I). It is possible that nanoparticle-mediated inhibition of AKT is at least in part secondary to that
of mTORC2, or that nanoparticles can directly inhibit mTORC1 (Figure I, broken lines). Nanoparticles can also
activate AKT/mTORC1 in particular conditions (Figure I). Both AMPK-mediated suppression and AKT-
mediated stimulation of mTORC1 activity by nanoparticles could be achieved through modulation of
ROS (Figure I). The proposed interactions are discussed in more detail in the main text.
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350 Trends in Biotechnology, May 2016, Vol. 34, No. 5



Download English Version:

https://daneshyari.com/en/article/36858

Download Persian Version:

https://daneshyari.com/article/36858

Daneshyari.com

https://daneshyari.com/en/article/36858
https://daneshyari.com/article/36858
https://daneshyari.com

