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Many species of microalgae produce hydrocarbons,
polysaccharides, and other valuable products in signifi-
cant amounts. However, large-scale production of algal
products is not yet competitive against non-renewable
alternatives from fossil fuel. Metabolic engineering
approaches will help to improve productivity, but the
exact metabolic pathways and the identities of the ma-
jority of the genes involved remain unknown. Recent
advances in bioinformatics and systems-biology model-
ing coupled with increasing numbers of algal genome-
sequencing projects are providing the means to address
this. A multidisciplinary integration of methods will
provide synergy for a systems-level understanding of
microalgae, and thereby accelerate the improvement of
industrially valuable strains. In this review we highlight
recent advances and challenges to microalgal research
and discuss future potential.

Diversity of microalgae and their biotechnological
potential
Microalgae are simple photosynthetic eukaryotes that are
among the most diverse of all organisms. Microalgae in-
habit all aquatic ecosystems, from oceans, lakes, and rivers
to even snow and glaciers, as well as terrestrial systems
including rocks and other hard surfaces. Microalgae exhib-
it significant variation in physiology and metabolism, a
reflection of the high level of genetic diversity that exists
between different phyla owing to multiple endosymbiotic
events, horizontal gene transfer, and subsequent evolu-
tionary processes, producing a polyphyletic collection of
organisms [1,2]. Given this diversity, mining the genomes
of these organisms provides a great opportunity to identify
novel pathways of biotechnological importance. In partic-
ular, microalgae are of considerable interest for the syn-
thesis of a range of industrially useful products, such as
hydrocarbons and polysaccharides [3,4], owing to rapid

growth rates, amenability to large-scale fermentation,
and the potential for sustainable process development [5].

Algae as a source of biofuel molecules, such as triacyl-
glycerides (TAGs), the precursor for biodiesel [6], have
been a focus in recent years, with potential yields an order
of magnitude greater than competing agricultural process-
es [7]. Evaluations of current technologies demonstrate
that microalgae are commercially feasible for biofuel pro-
duction, but are not yet cost-competitive with petroleum
products [8,9], the metric upon which commercial success
ultimately lies. For example, the net energy input versus
output for large-scale algae biodiesel production was esti-
mated to be 1.37, compared to 0.18 for conventional/low-
sulfur diesel [8]. Currently, for microalgae to synthesize
TAG it is necessary to expose them to stress conditions
such as nutrient limitation, which reduces growth and
increases energy dissipation. The trade-off between bio-
synthesis of TAG and cell growth is therefore a severely
limiting factor [10]. If a better understanding of the meta-
bolic and regulatory networkswere available, they could be
rewired for increased TAG synthesis, with fewer draw-
backs than for existing algal cells.

The production of other interesting algal products will
also benefit from a better understanding of microalgae at a
systems level. For example, polysaccharides such as starch
and cell wall materials can be used for biotechnological
applications [11]. These carbohydrates can be degraded to
fermentable sugars for bioethanol production [12], or serve
as chemical building blocks for renewable materials, but
the composition and proportions of the different sugar
components require optimization. Similarly, various valu-
able secondary metabolites produced by microalgae are of
interest in the food, nutrition, and cosmetics industries [3],
but often they are produced in trace amounts, or only under
conditions that are not amenable to industrial cultivation.

Over 30 microalgal genomes have been sequenced, and
numerous transcriptomics, proteomics, and other systems-
biology studies have been performed. Nevertheless, our
understanding of metabolic pathways within these micro-
algae remains limited [13]. Significant knowledge gaps
need to be filled between omics data, the annotation there-
of, and our systems-level understanding. This will allow
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the conversion of these resources into usable genome-scale
models (GSMM) and provide the basis for effective meta-
bolic engineering, synthetic biology and biotechnology. We
consider here the potential application of advanced meth-
ods to improve the functional annotation of algal omics
data, to increase the resolution of GSMM, and ways to
integrate available computational methods for effective
exploitation of microalgae in biotechnology.

Annotation challenges for microalgae
The nuclear genome of the green alga Chlamydomonas
reinhardtii, sequenced in 2007 [1], is approximately
120 Mb and comprises some 15 000 genes. Although
C. reinhardtii is commonly used as a reference for the
annotation of other microalgae, only a subset of �50 pro-
teins have an experimentally validated function according
to the UniProt database (http://www.uniprot.org), com-
pared to 6800 proteins for the model plant Arabidopsis
thaliana. Consequently, most C. reinhardtii genes have
been computationally annotated by inferred homology
with A. thaliana, and other plant species and microbes
[1], using BLAST (basic local alignment search tool) or
family-wise alignment methods such as HMMER and
InterProScan (Table 1). BLAST-based methods often use
the principle of one-to-one recognition, meaning that an-
notation of a query gene is based on the annotation of a
single known gene. This limits the success rate for recog-
nition and correct functional annotation of the more dis-
tantly related C. reinhardtii genes, but becomes even more
problematic when the in silico-derived functional annota-
tion ofC. reinhardtii is subsequently used for annotation of
other algal species. This is because, owing to a lack of
common ancestry, two algal species can be more diverse
than, for example, any two plant species. Therefore, these
methods, which are highly suitable for high-throughput
analysis because of their simplicity, are less appropriate
for accurate in-depth annotation of algal genomes. In the
CAFA (critical assessment of protein function annotation)
experiment [14], the accuracy of more advanced functional
annotation algorithms was assessed. The CAFA concluded
that 33 of 54 tested functional annotation algorithms out-
performed the standard BLAST-based method (Table 1).
The substantial improvement can be explained by the fact
that these second-generation methods do not apply the
one-to-one recognition principle but, to increase their

success rate, use instead a one-to-many recognition strat-
egy and/or include context-aware principles for annotation.
An example is Argot2 (Box 1) [15], which applies the one-to-
many recognition strategy by calculating the statistical
significance of all candidate homologous genes found by
BLAST [16] and HMMER [17], combined with an assess-
ment of semantic similarities of associated GO terms. In a
context-aware multilevel approach, annotation is not
merely based on sequence similarity, but other factors
such as protein–protein interactions [18], transcript ex-
pression patterns [18], phylogenetic trees [19], compart-
mentalization information [20], and literature [21] are also
taken into account. FFPred2 from UCL–Jones [20] is the
prime example of such a homology-independent functional
annotation algorithm.

Advanced multilevel annotation methods effectively in-
crease the recall of function prediction while maintaining
an acceptable precision. The challenge in genomic annota-
tion for microalgae lies in the small number of experimen-
tally validated algal genes and the lack of algae-specific
contextual data such as protein interaction and compart-
mentalization data. This results in a relatively low number

Table 1. Features of commonly used functional annotation tools

Methods Success ratea Computational speed Availability Additional notes Refs

Standard

BLAST

Limited Fast Online/offline Dependent on global sequence similarity for success

Suitable for high-throughput analysis

[16]

HMMER Moderate Fast Online/offline Family-wise alignment method

Suitable for high-throughput analysis

[17]

InterProScan Moderate Slow Online/offline Family-wise alignment method

Uses pre-computed protein domains

[72]

FFPred2 High Slow Limited online/offline Algorithms currently trained on non-algal datasets

Not suitable for high-throughput analysis

[20,23]

Argot2 High Moderate Limited online Initial selection is dependent on BLAST and HMMER

output

Additionally predicts compartmentalization

User-friendly interface

[15]

aFor distantly related sequences.

Box 1. Argot2

One of the top performers in the CAFA experiment is Argot2

(annotation retrieval of gene ontology terms) [15]. It stands out in

terms of simplicity, as well as by incorporation of BLAST and

HMMER. Argot2 combines an easy interface with multilayer

analysis, making it a perfect starting point for biologists wishing

to annotate their data.

Argot2 requires a nucleotide or protein sequence as input. It

queries the UniProt and Pfam databases using BLAST and HMMER

respectively, providing an initial high-throughput sequence analy-

sis. A weighting scheme and clustering algorithm are then applied

to the results to select the most accurate gene ontology (GO) terms

for each query sequence. The user can choose to perform this entire

process online at the Argot2 webserver, limited to one hundred

sequences per query. Alternatively, if the BLAST and HMMER steps

are performed locally and provided to the webserver, over

1000 sequences can be submitted per query. After the analysis is

completed, which can take several hours depending on the amount

of input data, the user is provided with the prediction results as well

as the intermediate BLAST and HMMER files. These predictions

include molecular function, biological processes, and cellular

component GO terms for each query. Predicted GO terms are

ranked by a score based on statistical significance and specificity.

Optionally, the user can choose to compute protein clusters based

on functional similarity.
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