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Fluids are involved in practically all physiological activi-
ties of living organisms. However, biological and biore-
lated flows are hard to analyze due to the inherent
combination of interdependent effects and processes that
occur on a multitude of spatial and temporal scales.
Recent advances in mesoscale simulations enable
researchers to tackle problems that are central for the
understanding of such flows. Furthermore, computation-
al modeling effectively facilitates the development of
novel therapeutic approaches. Among other methods,
dissipative particle dynamics and the lattice Boltzmann
method have become increasingly popular during recent
years due to their ability to solve a large variety of pro-
blems. In this review, we discuss recent applications of
these mesoscale methods to several fluid-related pro-
blems in medicine, bioengineering, and biotechnology.

Mesoscale modeling techniques
Computational modeling of fluid flows has become an
important tool that is successfully utilized in solving prac-
tical engineering problems. However, the commonly used
numerical methods based on the continuum approximation
may not always be readily adapted to describe transport
processes, micromechanics, and chemical interactions that
take place in biological and bioengineering systems at the
microscale. By contrast, atomistic scale simulation techni-
ques, such as molecular dynamics (MD) and Monte Carlo
(MC) simulations [1], can track the motion of individual
molecules and allow the precise reconstruction of the
molecular architecture and properties. However, these
atomistic methods are prohibitively expensive from the
computational point of view even for present-day powerful
supercomputers, when it comes to probing the dynamic
behavior of micrometer-sized systems that are of practical
interest in biotechnological applications.

In this situation, particle-based mesoscale methods are
attracting increasing attention as a promising means for
tackling challenging problems in bioengineering and bio-
technology (Table 1). These methods possess the unique
ability to model relatively large physical systems, and, at
the same time, effectively capture the essential features of
the micro- and nanoscale structure, architecture, and
relevant interactions.

In this review, we present several recent examples in
which two of the currently most popular mesoscale compu-
tational methods, namely dissipative particle dynamics
(DPD) [2] and the lattice Boltzmann method (LBM) [3],
are utilized to examine biologically relevant flows. Al-
though other mesoscale methods [4,5], such as multiparti-
cle collision dynamics, stochastic rotation dynamics,
smooth particle hydrodynamics, and lattice gas and lattice
chain models, may also offer unique advantages for model-
ing specific biomedical systems, they will not be discussed
in this short review.

Similar to MD, DPD uses a set of interacting particles or
beads. The dynamics of this many-body system is assessed
by time integration of Newton’s equation of motion. DPD
beads, representing clusters of molecules or fluid pockets,
interact via conservative, dissipative, and random forces
that give rise to normal and shear stresses and random
thermal motion [2].

In contrast to MD, DPD uses soft interaction potentials
allowing for a greater integration time step, which in turn
enables simulations of the dynamic processes that take
place over extended times. Furthermore, all interactions
between DPD beads are pairwise, thereby exactly conserv-
ing the total momentum of the system. The latter property
is critical for recovering the proper hydrodynamic behavior
even using a relatively small number of beads in the
simulations [6].

DPD beads interconnected by bending and stretching
springs can be readily used to create macromolecules and
polymer networks with different architectures, whereas
clusters of DPD beads that are firmly attached to each other
can be used to construct rigid objects with various geome-
tries, such as nanoparticles and nanorods. By selectively
tuning interactions between individual DPD beads, the
effective affinity of molecules can be modified to model
specific polymeric systems [7]. Additionally, long-range elec-
trostatic interactions can be introduced into the model [8].

Although the use of soft DPD potentials is beneficial for
the increased simulation speed, these potentials allow
DPD beads to overlap, which can result in chain intersec-
tions when modeling dense polymer melts [9]. This coarse-
graining problem can be mitigated via the use of repulsive
bond–bond potentials that allows one to properly capture
polymer micromechanics and entanglement [10].

LBM simulates fluid behavior using a set of ‘fluid par-
ticles’ that synchronously move along a lattice that is fixed
in space [3]. The motion of the particles is described using a
distribution function, time evolution of which is governed
by the discrete Boltzmann equations. The simulation
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algorithm includes two steps. The first step simulates the
propagation of particles to the neighboring nodes, whereas
the second step simulates collisions among particles situ-
ated at the same lattice node. The algorithm is then
repeated. The collisions are evaluated using a collision
operator that describes fluid relaxation towards a local
equilibrium. Resulting hydrodynamic properties, such as
fluid density, momentum, and stresses, are calculated
using the moments of the distribution function.

The simplicity and locality of the LBM algorithm makes
this method especially attractive for massive parallel com-
puting, typically required to model large multicomponent
systems [11]. By incorporating additional distribution
functions, LBM can be extended to model multiphase
and multicomponent fluids, including phase transition,
mixing, chemical reactions, and heat transport [12–15].
Incorporating thermal fluctuations in LBM or combining
the method with Brownian dynamics (BD) yield an effec-
tive tool for modeling the transport of nanoparticles and
polymer chains in out-of-equilibrium fluid flows [16–18].

One of the major advantages of the LBM over conven-
tional computational fluid dynamic (CFD) methods is its
ability to handle effectively flows in complex geometries
and particulate flows [19,20]. In LBM, a fluid–solid bound-
ary condition is typically implemented using the so-called
bounce back rule or its modifications [21]. That is, when a
fluid particle collides with a moving or stationary solid
wall, it is reflected back providing no slip and no penetra-
tion boundary conditions. Back flow effects associated with
the transport of solid particles suspended in a flowing fluid
can be also incorporated via a local body force that satisfies
the global force and momentum balances [22].

Blood flow and cell interactions
Modeling fluid flows that transport suspended particles
help us to understand better the hemodynamics and vari-
ous physiological and pathological conditions associated
with blood flow [23]. Such simulations, however, are rather
complicated due to the two-way coupling between multiple
finite-sized biological particles and unsteady fluid flow in
blood vessels that typically have complex geometry and
bifurcations. Furthermore, compliant cells constantly
change their shapes due to the local hydrodynamic stresses
and the interactions with the vessel walls and other par-
ticles, thereby adding to the flow complexity [24]. LBM has
been used extensively by researchers to probe the dynam-
ics of blood flows in different conditions (Figure 1A).

LBM has been used to simulate large populations of
deformable RBCs suspended in a flow [25]. An immersed
boundary (IB) approach for coupling between cells and
fluid flow has been developed to examine the behavior of
individual cells within dense RBC suspensions [26]. Cell
deformation, organization, and clustering in RBC suspen-
sions flowing in a microchannel have a significant influence
on the dynamic and rheological behaviors of the flow [27–
29]. LBM simulations have demonstrated that the cell-free
layer near vessel walls is influenced by both the deform-
ability of the cells and the aggregation strength, whereas
the viscosity of the cell suspension has a significant influ-
ence mostly during the flow transition. Similar conclusions
were obtained using DPD simulations [30].

The effect of cell deformability and plasma viscosity on
the cell trajectories in bifurcating microvessels was inves-
tigated using LBM [31]. It was shown that an increase in
cell rigidity or a decrease in viscosity results in the cell

Table 1. Advantages and disadvantages of microscale, mesoscale, and macroscale simulation techniquesa,b

Modeling approach Examples of methods Advantages Disadvantages

Microscale Ab initio methods and

atomistic methods that

model complete

molecular structure

Density functional

theory, molecular

dynamics, Monte Carlo

methods

� Explicitly model molecular

architecture and interactions

� Comprehensive information about

modeled system

� Readily simulate complex

heterogeneous systems

� Small physical domains and short

time scales

� Computationally expensive

� Extended simulations to eliminate

statistical noise

Mesoscale Particle-based methods in

which particles represent

clusters of molecules or

fluid pockets

DPD � Exactly conserves mass and

momentum

� Designed to model hydrodynamics

� Captures basic features of molecular

architecture

� Effective for modeling of

multicomponent systems

� Require mapping to specific physical

system

� Soft interaction potentials allow

particles to overlap

� Computationally expensive

� Reduced resolution compared to

molecular dynamics

� Limited to low Schmidt number

LBM � Efficient for flows in complex

geometries and with particles

� Computationally efficient including

massive parallel computing

� Models multi-phase systems

� Eliminates statistical noise

� Easy to implement

� Range of viscosities is limited by

method stability

� Typically used for incompressible

laminar flows

� Difficult to implement certain

boundary conditions

Macroscale Methods based on

discretization of

continuous form of

transport equations

Finite difference/

volume/element,

volume of fluid, level

set, immersed

boundary methods

� Well-established methods

� Computationally efficient

� Model large physical systems

� Typically formulated using primitive

variables

� Require a priori knowledge of

transport coefficients

� Disregard internal molecular

architecture

� Reconstruction of interfaces can be

complicated

aAmong different mesoscale methods, only DPD and LBM are listed because they are the focus of this review.

bNote that some of the listed disadvantages can be overcome by appropriate modifications or combinations of methods.
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