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‘Mass specs are precise but biology is not!’ is a frequently
heard argument when quantitative experimental data do
not fit into the overall picture. The problem with this
opinion is that the significance of measured biological
data becomes a matter of gut feeling. Doubtlessly, the
measurement precision of modern mass spectrometers is
far better than the reproducibility of biological experi-
ments. However, precisely for this reason, technical re-
production of mass spectrometric measurements neither
characterizes the whole experiment from cell cultivation
to producing biological data nor says anything about
systematic errors in the overall measurement procedure.
Taking quantitative metabolomics as a fruitful example,
we deal with the question of why it is so difficult to say
something precise about imprecision in biology.

Quantifying biology
As a result of its historical development, biology is not
really a quantitative discipline. ‘Yes or no’ questions can
still be answered on the basis of rather crude or compara-
tive data. But if the mission of systems biology (that is,
obtaining a quantitative understanding of cellular behav-
ior through integration of experimentation and mathemat-
ical modelling) is to be taken seriously, there is no way
around quantitation. Particularly, mechanistic mathemat-
ical models are highly sensitive to systematic errors in the
underlying data, and predictions can easily become worth-
less [1]. If economic considerations play a part, as in the
case of applied biotechnology, the challenge is even greater.
We must be able to compare quantitatively the perfor-
mance of genetically modified organisms or cultivation
regimes in which differences can be in the range of a
few percent [2]. Thus, quantitative biology becomes a
cornerstone of systems and synthetic biology [3], as well
as of all technically oriented biotechnological disciplines.

Interestingly, when discussing biological experiments
with physicists, their first question always concerns data
quality. In physics, the quantitative analysis of measure-
ment protocols and instruments is absolutely fundamental
and highly developed [4]. By contrast, the general theory of
experimental error analysis (see Glossary) is often not
part of basic biological training. Can we really establish
quantitative biology without such a sound methodological

platform? And what precisely distinguishes biology from
physics?

The accuracy and precision of multi-step bioanalytical
measurement procedures are always the sum of many
different elementary errors with their systematic and
stochastic influences. Particularly for the complex mea-
surement procedures of modern metabolomics, we need a
scientific basis for assessing the degree of confidence we
have in quantitative biological data.

In the following sections, we analyze the known sources
of errors in common metabolomics measurement protocols
by addressing the problems of precision, accuracy and error
propagation (Box 1). It will become clear that it is not
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Glossary

Absolute quantification: aims at the absolute comparability of two measure-

ments taken at different times and/or places.

Bioanalysis: deals with the development of standardized measurement

protocols, which are sequences of cell cultivation, sampling, cell disruption,

extraction, chromatography, detection, or spectral evaluation steps. In general,

these protocols are lengthy and complicated. Consequently, the measurement

is subject to many disturbances and the elimination of systematic errors is of

paramount importance for bioanalysis and constitutes an ongoing process.

Error analysis: a methodology that deals with the whole complexity of a

measurement protocol by separately characterizing every single step of it (cf.

Box 1). By contrast, for complex protocols, the experimental multiple execution

of a complete experiment including measurement is only a theoretical option.

Gold standard: a measurement protocol that may be extremely complicated

and expensive but reproduces the true physical quantity very well. Unfortu-

nately, the continuing improvement of instrumentation and procedures in

metabolomics is a long-term endeavor that is still far from converging to a

quasi-standard. Moreover, there are some conceptual issues about ‘true’

quantities (see ‘measured quantity’).

Measured quantity: a physical entity that can be quantitatively described by a

number and exists independently of the measurement protocol used. Defining

the measured quantity in biology is part of the measurement problem. Taking,

for example, the ATP concentration in a cell, it quickly becomes clear that this

is not really what is measured. Apart from the notorious cellular compart-

mentation problem, the chemical name disguises the fact that ATP simulta-

neously occurs in different forms as ATP4–, HATP3–, H2ATP2–, MgHATP–, and

Mg2ATP. They all have different biological activity but can hardly be separated

analytically.

Relative quantification: aims at the ratio between a reference sample and a

measured sample. It can be shown (Box 1) that relative quantification is less

problematic than the ultimate goal of absolute quantification.

Reproducibility: means that a result is exactly reproduced in repeated

experiments, but it may, nevertheless, be completely wrong. In chemical

analysis, data reproduction is described by the term precision, whereas a

statistician would use the expression (standard) deviation. In contrast to

accuracy (needing a gold standard), precision can be experimentally assessed.

As a rule of thumb, lengthy protocols tend to be more accurate but imprecise,

whereas short protocols are rather inaccurate but precise.

Systematic error: has different synonyms in different disciplines. In chemical

analysis it is called accuracy, a statistician would say bias. Keeping the

discrepancy between the average measured quantity and the corresponding

‘true’ biological quantity as small as possible is the great challenge for

bioanalysis. Accuracy should not be confused with reproducibility of a

measurement procedure.
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sufficient to simply repeat experiments (biological repli-
cates) or measurements (technical replicates) to obtain a
proper judgment of data quality and error sources.

Biological variability: still a riddle
Metabolomics seems to be a simple task: we have to
measure the total molar amount of metabolites found in
a sample volume, then we have to relate it to the total
biomass volume in the sample in order to obtain an intra-
cellular concentration. Unfortunately, it is not that easy,
and the very first question that arises is: ‘What precisely is
the biomass?’ This question is as old as Monod’s break-
through papers on bacterial growth [5] and has still not
been satisfactorily answered.

The major problems are to separate viable from non-
viable cells and, subsequently, to measure the fraction of
viable cells without bias. But which characteristics must a
cell have in order to be considered ‘viable’? Established
criteria for narrowing the term ‘cell viability’ are manifold
and can be based on, for example, cell growth, metabolic
activity, membrane potential, or cell membrane integrity.

Following the concept of Diaz et al. [6], a typical cell popula-
tion can be roughly divided into viable cells, viable but non-
culturable (VBNC) cells, damaged cells, and dead cells. By
definition, both viable and VBNC cells possess intact mem-
branes. Cell membrane integrity is essential because only
intact cells are able to build gradients and potentials to
enable energy production and cell proliferation. Clearly,
only viable cells contribute to the metabolome and therefore
represent the relevant biomass for intracellular metabolite
quantification. Unfortunately, the simple equation ‘all in-
tact cells are viable’ need not hold.

As a useful concept to relate cell viability to metabolo-
mics, Harris et al. [7] introduced the term ‘biovolume’ to
describe the liquid volume that is enclosed by an intact
biological membrane. In general, the biovolume should be
the preferred reference volume for intracellular metabolite
quantification (Figure 1). Methods for direct biovolume
measurement are already well established: for example,
Coulter counter devices [8] or dielectric probes [7].

What makes the problem more complex is the fact that
even the viable cells might divide into subpopulations

Box 1. Error propagation

Error propagation analysis is based on the laws of probability. It

serves to calculate the overall standard deviation of a complex

measurement protocol by accumulating all single stochastic influ-

ences along its processing steps. On the one hand, it is the method of

choice for assessing the precision of a protocol, but on the other

hand, it cannot say anything about its accuracy. Without going into

the details of the methodology, a simple example illustrates how it

works.

In the following, all errors are written as relative errors (percen-

tages) e, d, etc. For example, a �10% error is indicated by e = �0.1. If a

true quantity, x, is measured with some error, e, the resulting

measurement is y = (1 + e)�x. Note that e is a stochastic term and

can have both signs. In the following calculations, higher-order

products such as e�d, e2, e�d�g, etc. are very small and, thus, can be

neglected. This simple approximation is the centerpiece of classical

error propagation methods based on the calculation of partial

derivatives.

As a highly simplified example, consider a measurement protocol

covering three steps: (i) biological variability, cultivation, and

sampling; (ii) sample processing; and (iii) chromatography and MS

measurement (Figure I, top). This corresponds to three relative errors

e, d, g. The relation between the true quantity, x, and the measured

quantity, y, is then described by (neglect higher-order terms):

y ¼ ð1 þ eÞ � ð1 þ dÞ � ð1 þ gÞ � x � ð1 þ e þ d þ gÞ � x
It turns out that relative errors add up in a simply linear error

propagation pipeline.

Consider now the case that the ratio of two independently

processed measurements (indexed with 1 and 2) is wanted. By

expanding the fraction it holds:

Keep in mind that all terms ei, di, gi can have both signs. Again, it

turns out that all relative errors contribute additively to the total error,

although some of the errors might cancel out. Consequently, the

average error of a quotient of two absolute measurements is even

higher than the relative error of each single measurement.

This changes when both samples are partly processed together.

This is typical for many comparative studies with all kinds of ‘omics’

methods. In case of metabolomics, imagine two differently isotope-

labeled samples. If the middle processing steps are identical (Figure I,

bottom), it holds that d1 = d2 = d and, thus:

Obviously, one error cancels out. If this processing error d is the

largest one in the pipeline, this will lead to a significant error

reduction. However, what is frequently overlooked is that the

biological stochasticity and cultivation errors e1 and e2 are still present

and, thus, relative procedures do not necessarily perform much better

than absolute ones.

Although this example is oversimplified, it demonstrates the basic

principles of error propagation: a mathematical model is formulated

explaining the influences of different error sources. Unlike the simple

example, the model should contain a physical description of all

protocol steps, including the necessary calibration steps. An approx-

imate first-order calculation or, alternatively, a fully nonlinear Monte

Carlo calculation (not shown here) then leads to the determination of

the quantitative contribution of each individual error to the overall

result. This generates a much greater understanding than just an

experimental repetition of the whole multi-step procedure.
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Figure I. Strongly simplified metabolomics processing pipelines for absolute

(top) and relative (bottom) measurements.
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