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The gut microbiota is increasingly being recognized as a
key site of metabolism for drugs and other xenobiotic
compounds that are relevant to human health. The
molecular complexity of the gut microbiota revealed
by recent metagenomics studies has highlighted the
need as well as the challenges for system-level modeling
of xenobiotic metabolism in the gut. Here, we outline the
possible pathways through which the gut microbiota
can modify xenobiotics and review the available compu-
tational tools towards modeling complex xenometa-
bolic processes. We put these diverse computational
tools and relevant experimental findings into a unified
perspective towards building holistic models of xeno-
biotic metabolism in the gut.

Gut microbiota as a site of xenometabolism
The gut microbiota has been shown to modify or metabolize
several kinds of xenobiotics, from novel cancer drugs
through millennia old analgesics to dietary components
[1–7]. Recent studies have also highlighted the feasibility
of exploiting and manipulating this microbe-mediated
xenometabolism to improve the host health or to prohibit
medicinal side effects. For example, Wallace et al. [6]
recently showed that a deleterious biotransformation of
the cancer drug irinotecan can be averted by inhibiting
bacterial b-glucuronidase. On a more general level, pro-
biotic bacteria like Lactobacillus sp. have been shown to
ease Clostridium difficile-associated diseases, diarrhea,
and other side effects of antibiotics [8,9].

Owing to the advances in various omics technologies,
molecular pathways of xenometabolism in the gut micro-
biota have now started to unfold through the identification
of responsible microorganisms and enzymes [6,10,11].
With the help of metagenomics tools, it is now possible
to determine the identity of a large fraction of the microbial
species colonizing the human gut [12,13]. These tools are
also revealing the genetic repertoire of the gut microbiome
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Glossary

BRENDA: Braunschweig Enzyme Database – one of the main collections of

enzyme function and activity data. The database contains several xenobiotic–

enzyme interactions (for examples, see Figure 2).

Constraint-based modeling: a metabolic modeling technique that uses mass

balance, reaction directionality and metabolite uptake/secretion constraints to

estimate intracellular fluxes (reaction rates) for a given metabolic network.

Enterohepatic cycle: circulation of native or xenobiotic compounds between

liver and gastrointestinal tract. Hepatic biotransformations that increase water

solubility of the compounds, for example, glucuronidation of bilirubin, is a

common denominator for most known enterohepatic circulations.

Enzyme promiscuity: property of enzymes whereby reactions are catalyzed

with a degree of non-specificity. A promiscuous enzyme can act on multiple

substrates and/or produce different products starting with the same substrate.

Genome-scale metabolic model: a comprehensive mathematical representa-

tion of metabolic capabilities of a cell. A typical bacterial model consists of a

network of several hundreds of reactions that are compiled based on genomic,

biochemical and other evidences.

KEGG: Kyoto Encyclopedia of Genes and Genomes. A comprehensive

database of high-level gene functions and their organization in a pathway or

cellular context. The well-maintained and annotated pathway maps, reaction

modules, and drug database of KEGG are of particular interest for modeling

enzyme promiscuity and predicting xenometabolic pathways.

Machine learning algorithms: computational methods aimed at prediction

based on patterns learned from a given input dataset (training data). In the

absence of mechanistic models, machine learning is a useful tool for predicting

whether a xenobiotic compound of interest would be susceptible for chemical

modification by a particular enzyme. Known enzyme–compound relations from

databases like BRENDA, KEGG, and UM-BBD can be used as training data.

Phase I and II metabolism: metabolic reactions that predominantly occur in the

liver and gastrointestinal epithelial tissue. Whereas the phase I enzymes introduce

reactive or polar chemical groups in the xenobiotic compounds, the phase II

enzymes catalyze conjugation reactions. Together, phase I and II metabolism

alters the activity of xenobiotics and/or converts them into more water-soluble

compounds, often leading to detoxification and eventual excretion.

Structure-activity relation (SAR) paradigm: SAR paradigm assumes that

similar molecules have similar biological activities. Thus, the activity of a

xenobiotic compound of interest can be described based on the activity of

known compounds with similar physicochemical/molecular properties. Differ-

ent biochemical activities depend on different physicochemical properties,

therefore, the most critical step in the application of SAR paradigm is to

identify a similarity metric that is most appropriate for the activity in question.

A quantitative approach to structure–activity relation (QSAR) allows predicting

the degree of expected activity based on the degree of similarity.

Site of metabolism: site in a chemical compound at which the major chemical

change takes place during a given biochemical transformation.

Thermodynamic feasibility analysis: feasibility analysis for a particular

biochemical transformation based on estimation of the overall change in the

Gibb’s free energy (DG) accompanying the reaction. Only reactions with

negative DG values are thermodynamically feasible.

UM-BBD: University of Minnesota Biocatalysis/Biodegradation Database;

contains extensive data on microbial biocatalytic reactions and biodegradation

pathways.

Xenobiotics: molecules of foreign origin encountered by the body, such as

drugs and dietary compounds that are not naturally produced by the human

body.

Xenometabolism: enzyme-mediated biochemical transformation/degradation

of xenobiotics.
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in unprecedented detail. The resulting rich datasets are
enabling the characterization of the gut microbial commu-
nities and their association with health [14]. Metage-
nomics datasets are also providing a starting point for
modeling the collective metabolic behavior of the gut
microbiota [15,16]. In parallel to these advances stemming
from metagenomics studies, more experimental evidence is
piling up supporting the key role of gut microbiota in
xenometabolism [3–5]. Many of the aforementioned stu-
dies have gained useful insight from or were validated in
animal models. Indeed, animal models have been funda-
mental for understanding the biology of gut microbiota in
general [17]. Complementing metagenomics, metabolo-
mics has made it possible to trace the metabolic fate of
xenobiotic compounds [18–20], leading the recent resurge
in the research on xenometabolism [21–23].

Role of modeling in tackling complexity of
xenometabolic processes
Xenometabolic processes in the gut can be highly complex
due to three main reasons: the widespread promiscuity of
metabolic enzymes; the compositional complexity of the

gut microbiota; and the interactions between the host and
the microbe-mediated xenometabolism. The promiscuity of
metabolic enzymes [24–26] means that the number of
possible routes through which a xenobiotic compound
can be metabolized or modified increases combinatorially
with the enzymatic repertoire of the microbiota. The com-
positional diversity and spatial heterogeneity of the micro-
biota and the host–microbiota interaction through the
enterohepatic cycle add another layer to this complexity.
These inherent complexities and the limitations in
obtaining in vivo data from human subjects raise the
appeal for computational modeling of xenometabolism. A
holistic modeling platform accounting for combined host–
microbiota xenometabolism can be instrumental in drug
development and for devising personalized medicine stra-
tegies. Such a platform would allow prediction of potential
xenometabolic pathways and thereby generation of testa-
ble hypotheses. Although no single platform currently
tackles all of the distinct challenges in modeling xenome-
tabolism, several tools are available that are capable of
addressing the key individual steps. These tools range from
prediction of enzyme-level biotransformation [27–30] to

Table 1. Representative computational tools relevant for modeling xenometabolism by the gut microbiota

Tool Original scope Main features/techniques Web access/
open source

Refs

Single-step biotransformation prediction

MetaPrint2D Sites of human phase I metabolism Comparison to reaction centers from the proprietary

Symyx Metabolite database

Yes/yesa [30]

MetaPrint2D-React Subset of biotransformations in

phase I metabolism

Based on Metaprint2D Yes/– [30]

Meteor Metabolites of phase I and phase II

metabolism

Reaction rules based on multiple knowledge bases No/no [44]

MaRIboES Generic Generalized reactions based on BRENDA No/yes [28]

Chen, Feng et al. Generic Machine learning No/upon request [48]

Mu, Unkefer et al. Sites of enzymatic attack Reaction rules based on KEGG; machine learning Yes/no [50]

Biotransformation pathway prediction

MetabolExpert Biodegradation by plants and

animals

Knowledge based reaction rules No/no [45]

UM-PPS Biodegradation by aerobic bacteria Reaction rules based on UM-BBD; expert knowledge Yes/no [29]

CRAFT Biodegradation by aerobic bacteria Reaction rules based on UM-BBD No/yes b

BNICE Generic Generalized reactions based on EC numbers;

thermodynamic feasibility analysis

No/no [27]

PathPred Microbial biodegradation Machine learning based on KEGG Yes/no [47]

Desharky Microbial biodegradation to host

native metabolites

Pathway search using KEGG; host-organism specific No/yes [85]

Species metabolic modeling

Model SEED Bacterial genome-scale metabolic

models

Constraint-based modeling; automated model

construction

Yes/yes [57]

COBRA Toolbox Generic Constraint-based modeling; MATLAB and Python

based

No/yesc [61]

OptFlux Generic Constraint-based modeling; Java based No/yes [86]

Microbial community modeling

OptCom Generic; continuous growth Constraint-based modeling; accounts for growth

requirements of individual species

No/academic use [31]

KIitgord and Segrè Induction of cooperation in

communities

Constraint-based modeling; focus on nutritional

composition of growth media

No/yes [32]

Freilich et al. Competitive and cooperative

interactions

Constraint-based modeling; pairwise interactions No/– [84]

Abbreviations: EC, Enzyme Commission; –, no information found.

aTool is open source, database is excluded.

bhttp://www.molecular-networks.com/products/craft.

cWorks within the licensed MATLAB framework.

Review Trends in Biotechnology March 2014, Vol. 32, No. 3

158

http://www.molecular-networks.com/products/craft


Download English Version:

https://daneshyari.com/en/article/37203

Download Persian Version:

https://daneshyari.com/article/37203

Daneshyari.com

https://daneshyari.com/en/article/37203
https://daneshyari.com/article/37203
https://daneshyari.com

