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In this article, we define and study the problem of exchanging knowledge between a 
source and a target knowledge base (KB), connected through mappings. Differently from 
the traditional database exchange setting, which considers only the exchange of data, 
we are interested in exchanging implicit knowledge. As representation formalism we use 
Description Logics (DLs), thus assuming that the source and target KBs are given as a DL 
TBox+ABox, while the mappings have the form of DL TBox assertions. We define a general 
framework of KB exchange, and study the problem of translating the knowledge in the 
source KB according to the mappings expressed in OWL 2 QL, the profile of the standard 
Web Ontology Language OWL 2 based on the description logic DL-LiteR. We develop novel 
game- and automata-theoretic techniques, and we provide complexity results that range 
from NLogSpace to ExpTime.

© 2016 Elsevier B.V. All rights reserved.

1. Introduction

Ontologies are at the heart of various Computer Science disciplines, among which the most prominent ones are Semantic 
Web, Biomedical informatics, and of course, Artificial Intelligence and Knowledge Representation. Here, for simplicity, by 
ontology we mean a formal representation of the knowledge about a domain in terms of concepts (unary predicates) and 
roles (binary predicates). In the biomedical domain, e.g., Pneumonia and Lung could be concepts, and finding_site could be a 
role, and the knowledge about the domain could be asserted in an axiom of the form “The finding site of pneumonia is lungs”
[1,2]. The advantages of using ontologies are that, on the one hand, they provide a framework for organizing and structuring 
information, and on the other hand, they are equipped with capabilities to reason about concepts and roles.

When representing the knowledge about a domain of interest in terms of an ontology, on the one hand the designer is 
free to choose the formalism in which to express the ontology, among a variety of different alternatives (e.g., a relational 
database possibly with constraints, Datalog, or Description Logics). On the other hand, she can select the specific terminology 
she considers more appropriate to convey the domain semantics. For instance, when creating a biomedical ontology about 
deseases, the lungs can be modeled as Pair_of _lungs or Both_lungs. This leads to having complex forms of information, 
maintained in different formats and organized according to different structures. Often, this information needs to be shared 
between agents: to reuse the existing ontologies, to integrate knowledge from different agents, and so on. Therefore in 
recent years, both in the data management and in the knowledge representation communities, several settings have been 
investigated that address this problem from various perspectives: (i) in information integration, uniform access is provided 
to a collection of data sources by means of an ontology (or global schema) to which the sources are mapped [3]; (ii) in 
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Fig. 1. Data exchange framework.

peer-to-peer systems, a set of peers declaratively linked to each other collectively provide access to the information assets 
they maintain [4–6]; (iii) in ontology matching, the aim is to understand and derive the correspondences between elements 
in two ontologies [7–9]; (iv) in ontology modularity, the aim is to extract independent, possibly small, subsets of an ontology, 
so-called modules [10–12]; (v) in knowledge translation, axioms are being translated from one representation (i.e., logical 
language and vocabulary) into another [13–15]; and, finally, (vi) in data exchange, the information stored according to a 
source schema needs to be restructured and translated so as to conform to a target schema [16,17]. The work we present 
in this article is inspired by this latter setting investigated in databases.

Data exchange is a field of database theory, motivated by several applications from industry [18,19], that deals with 
transferring data between differently structured databases. In the seminal article [16], the data exchange problem was 
defined as the problem of transforming data structured under a source schema into data structured under a target schema, 
given a mapping specifying how to translate data from the source to the target schema. This problem is depicted in Fig. 1, 
where the obtained target data instance is referred to as a solution. The data exchange problem has been studied for 
different combinations of languages used to specify the source schema, the target schema and the mapping [17,20,21]. Most 
of the results in the literature consider source-to-target tuple generating dependencies (tgds) as the language to specify 
mappings. The dependencies in this class allow one to express containment of conjunctive queries: if a conjunction of 
several predicates holds, then a conjunction of some other predicates must hold as well. For example, the tgd

∀a,b . AuthorOf (a,b) → ∃y, g . BookInfo(b,a, y) ∧ BookGenre(b, g) (1)

says that if a is the author of a book b, then there exist y and g such that b is a book with author a that was published in 
year y, and b has genre g . Many database integrity constraints can be expressed by tgds, so these dependencies have been 
widely used in databases. Source-to-target tgds (st-tgds) are tgds of a special shape: the conjunction on the left-hand side 
uses only symbols from a source schema, while the conjunction on the right-hand side uses only symbols from a target 
schema.

A fundamental assumption in the (traditional) data exchange framework is that the source is a complete database: every 
fact is either true or false. On the other hand, a target instance can be incomplete and a source instance can have many 
different solutions, as incomplete information can be introduced by the mapping layer (see also [22]).

Example 1.1. If we consider the mapping consisting of the constraint (1), and a source instance consisting of one entry 
AuthorOf (tolkien, lotr), encoding that Tolkien is the author of ‘The Lord of the Rings’, then the following two target instances, 
I2 and I ′2, are solutions:

I2 = {BookInfo(lotr, tolkien,1937), BookGenre(lotr, fantasy)},
I ′2 = {BookInfo(lotr, tolkien,null1), BookGenre(lotr,null2)}.

Note that here incompleteness is caused by the existential restriction ∃y, g . . . , which can be satisfied by introducing new 
objects: either named individuals (or constants), like fantasy, or anonymous objects, like null1. Note also that null1 and 
null2 are labeled nulls, which are widely used in databases to represent anonymous objects. �

To characterize good transformations, several criteria have been considered [23]. We emphasize two types of good trans-
lations, universal solutions and query solutions. Universal solutions are the most general solutions: any other solution is more 
specific (I ′2 in Example 1.1 is a universal solution), while query solutions are good solutions from the point of view of 
answering target queries, i.e., queries formulated over the target schema.

Data exchange with incomplete information. As mentioned before, in the (traditional) data exchange framework, source 
instances are assumed to contain complete information. However, there are natural scenarios where source instances may 
contain incomplete information [24,25,21]. In particular, the problem of data exchange with incomplete source data was 
studied in [25], where an incomplete specification is understood as an object with (possibly infinitely) many interpretations. 
A simple example of such an object is a database with nulls: assume that we have a table storing information about book 
genres, and that ‘The Lord of The Rings’ is a book whose genre is unknown. In this case, the table would consist of an entry 
of the form BookGenre(lotr, null), which represents all different instances containing a concrete value for the genre of ‘The 
Lord of The Rings’: BookGenre(lotr, fantasy), BookGenre(lotr, history), BookGenre(lotr, scifi), etc.
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