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In this note we provide a concise report on the complexity of the causal ordering problem, 
originally introduced by Simon to reason about causal dependencies implicit in systems of 
mathematical equations. We show that Simon’s classical algorithm to infer causal ordering 
is NP-Hard—an intractability previously guessed but never proven. We present then a 
detailed account based on Nayak’s suggested algorithmic solution (the best available), 
which is dominated by computing transitive closure—bounded in time by O (|V| · |S|), 
where S(E, V) is the input system structure composed of a set E of equations over a 
set V of variables with number of variable appearances (density) |S|. We also comment 
on the potential of causal ordering for emerging applications in large-scale hypothesis 
management and analytics.

© 2016 Elsevier B.V. All rights reserved.

1. Introduction

The causal ordering problem has long been introduced by Simon as a technique to infer the causal dependencies implicit 
in a deterministic mathematical model [1]. For instance, let f1(x1) and f2(x1, x2) be two equations defined over variables 
x1, x2. Then the causal ordering problem is to infer all existing causal dependencies, in this case the only one is (x1, x2), 
read ‘x2 causally depends on x1.’ It is obtained by first matching each equation to a variable that appears in it, e.g., f2 �→ x2. 
Intuitively, this means that f2 is to be assigned to compute the value of x2—using the value of x1, which establishes a 
direct causal dependency between these two variables. Indirect dependencies may then arise and can be computed, which 
is specially useful when the system of equations is very large.

Causal ordering inference can then support users with uncertainty management, say, towards the discovery of what is 
wrong with a model for enabling efficient and effective modeling intervention. If multiple values of x1 are admissible for a 
modeler, then as a user of the causal ordering machinery she has support to track their influence on the values of x2. One 
major application for that is probabilistic database design [2].

Back in the 1950s, Simon was motivated by studies in econometrics and not very concerned with the algorithmic aspects 
of the Causal Ordering Problem (COP). Yet his vision on COP and its relevance turned out to be influential in the artificial 
intelligence literature. In a more recent study, Dash and Druzdzel revisit and motivate it in light of modern applications [3]. 
They show that Simon’s original algorithm, henceforth the Causal Ordering Algorithm (COA), is correct in the sense that any 
valid causal ordering that can be extracted from a self-contained (well-posed) system of equations must be compatible with 
the one that is output by COA [3]. Their aim has also been (sic.) to validate decades of research that has shown the causal 
ordering to provide a powerful tool for operating on models. In addition to the result on the correctness of COA, their note 
also provides a convenient survey of related work that connects to Simon’s early vision on causal reasoning.
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However, Simon’s formulation of COP into COA—originally in [1], and reproduced in [3], turns out to be intractable. There 
is a need to distinguish Simon’s COA from COP itself. The former still seems to be the main entry point to the latter in the 
specialized literature. In fact, there is a lack of a review on the computational properties of COA—and as we show in this 
note, it tries to address an NP-Hard problem as one of its steps. The interested reader who needs an efficient algorithmic 
approach to address COP in a real, large-scale application can only scarcely find some comments spread through Nayak [4, 
pp. 287–291], and then Iwasaki and Simon [5, p. 149] and Pearl [6, p. 226] both pointing to the former. Regarding Simon’s 
COA itself, the classical approach to COP, it is only Nayak who suggests in words that (sic.) ‘[it] is a worst-case exponential 
time algorithm’ [7, p. 37]. We discuss this ambiguity that exists in the most up-to-date literature shortly in §1.2.

COP is significant also in view of emerging applications in large-scale hypothesis management and analytics [2]. The 
modeling of physical and socio-economical systems as a set of mathematical equations is a traditional approach in science 
and engineering and a very large bulk of models exist which are ever more available in machine-readable format. Simon’s 
early vision on the automatic extraction of the “causal mechanisms” implicit in (large-scale) models for the sake of in-
formed intervention finds nowadays new applications in the context of open simulation laboratories [8], large-scale model 
management [9] and online, shared model repositories [10–12].

In this paper we review the causal ordering problem (§2). Our core contributions are (§3) to originally show that COA 
aims at addressing an NP-Hard problem, confirming Nayak’s earlier intuition; and then (§4) to organize into a concise yet 
complete note his hints to solve COP in polynomial time.

1.1. Informal preliminaries

Given a system of mathematical equations involving a set of variables, the causal ordering problem consists in detecting 
the hidden asymmetry between variables. As an intermediate step towards it, one needs to establish a one-to-one mapping 
between equations and variables [1].

For instance, Einstein’s famous equation E = m c2 states the equivalence of mass and energy, summarizing (in its scalar 
version) a theory that can be imposed two different asymmetries for different applications. Say, given a fixed amount of 
mass m = m0 (and recalling that c is a constant), find the particle’s relativistic rest energy E; or rather, given the particle’s 
rest energy, find its mass or potential for nuclear fission. That is, the causal ordering depends on what variables are set 
as input and which ones are “influenced” by them. Suppose there is uncertainty, say, a user considers two values to set 
the mass, m = m0 or m = m′

0. Then this uncertainty will flow through the causal ordering and affect all variables that are 
dependent on it (energy E).

For really large systems, having structures say in the order of one million equations [13], the causal ordering problem is 
critical to provide more specific accountability on the accuracy of the system—viz., what specific variables and subsystems 
account for possibly inaccurate outcomes. This is key for managing and tracking the uncertainty of alternative modeling 
variations systematically [8,13].

1.2. Related work

COA. Dash and Druzdzel [3] provide a high-level description of how Simon’s COA [1] proceeds to discover the causal 
dependencies implicit in a structure. It returns a ‘partial’ causal mapping: from partitions on the set of equations to same-
cardinality partitions on the set of variables—a ‘total’ causal mapping would instead map every equation to exactly one 
variable.

They show then that any valid total causal mapping produced over a structure must be consistent with COA’s partial 
causal mapping. Nonetheless, no observation at all is made regarding COA’s computational properties in [3], leaving in the 
most up-to-date literature an impression that Simon’s COA is the way to go for COP. In this note we show that Simon’s COA 
tries to address an NP-Hard problem in one of its steps, and then clearly recommend Nayak’s efficient approach to COP as a 
fix to COA.

COP. Inspired by Serrano and Gossard’s work on constraint modeling and reasoning [14], Nayak describes an approach 
that is provably efficient to process the causal ordering: extract any valid total causal mapping and then compute the 
transitive closure of the direct causal dependencies, viz, the causal ordering. Nayak’s is a provably correct approach to COP, 
as all valid ‘total’ causal mappings must have the same causal ordering.

In this note we arrange those insights into a concise yet detailed recipe that can be followed straightforwardly to solve 
COP efficiently.

2. The causal ordering problem

We start with some preliminaries on notation and basic concepts to eventually state COP formally.
For an equation f (x1, x2, . . . , x�) = 0, we will write Vars( f ) � {x1, x2, . . . , x�} to denote the set of variables that appear 

in it.

Definition 1. A structure is a pair S(E, V), where E is a set of equations over a set V of variables, V �
⋃

f ∈E Vars( f ), such 
that:
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