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We discuss a new implementation of, and new experiments with, Fajtlowicz’s Dalmatian 
conjecture-making heuristic. Our program makes conjectures about relations of real 
number invariants of mathematical objects. Conjectures in matrix theory, number theory, 
and graph theory are reported, together with an experiment in using conjectures to 
automate game play. The program can be used in a way that, by design, advances 
mathematical research. These experiments suggest that automated conjecture-making can 
be a useful ability in the design of machines that can perform a variety of tasks that 
require intelligence.

© 2015 Elsevier B.V. All rights reserved.

1. Introduction

We have reimplemented Fajtlowicz’s useful but little-known Dalmatian heuristic for the automation of mathematical 
conjecture-making (this heuristic, for instance, has never been referenced in the pages of this journal). The heuristic is gen-
eral and can be used to conjecture relations between real number invariants of any objects, mathematical or otherwise. We 
include examples of conjectures in number theory, matrix theory, graph theory and the characterization of game positions. 
One of the number theory conjectures implies, and is stronger than, Goldbach’s Conjecture. Some of the number theory 
conjectures seem to imply the Riemann Hypothesis. And some of the graph theory conjectures would advance the lower 
bound theory of the independence number of a graph, a widely-studied NP-hard graph invariant. We have also implemented 
an idea, suggested to us by Barry Mazur, to include existing theorems in the program; when used in this way the program 
is guaranteed to produce statements that are not implied by existing mathematical knowledge.

Our program often makes interesting and useful conjectures on the basis of only a few examples. Humans, ordinarily 
and of necessity, make decisions based on very limited data. A general automated conjecture-making module that can make 
plausible and useful guesses based on limited data may be a central architectural feature in the design of machines that are 
intelligent. Guesses can be used, for instance, to constrain a search of possible actions. Fajtlowicz introduced his Dalmatian 
heuristic for the automation of mathematical conjecture-making more than 20 years ago [1]. Simply put, the heuristic is to 
produce a considered mathematical statement if it is both true—with respect to some given examples (matrices, integers, 
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graphs, etc.)—and if the statement gives new information about those objects, in particular, if it says something about at 
least one of the objects which is not implied by any other stored statement or conjecture.

It was very successful—both in limiting the number of conjectures produced by earlier versions of his Graffiti program 
and in producing conjectures of interest to research mathematicians. His student DeLaVina reimplemented the heuristic in a 
program that produces conjectures that have led to research and publications by mathematicians [2]; otherwise the heuristic 
has not been used. Fajtlowicz made some experiments to demonstrate the domain independence of the Dalmatian heuristic; 
nevertheless, the predominant and best-known uses of the heuristic—in the programs of Fajtlowicz and DeLaVina—has been 
in the production of graph theory conjectures. But the heuristic is not specific to the production of graph theory conjectures.

Our program is open-source, written in Python and C, and implemented as a Sage package. Details about the acquisition 
and use of our program, the Sage open-source mathematical computing environment, and how to reproduce our results are 
relegated to Appendix A.

Our experiments in implementing and applying this heuristic, including in domains where the authors have no more 
knowledge than anyone who has browsed a textbook or reference book, lead us to make several conclusions, which we will 
elaborate and discuss.

1. Successful mathematical discovery heuristics can be applicable in a variety of mathematical domains.
2. Good conjectures can be based on very limited data.
3. Mathematical discovery programs should aim to produce conjectures that address and advance pre-existing mathemat-

ical questions.
4. Intelligent conjecture-making programs for a domain do not require developer expertise in that domain.

Some of these conclusions should be surprising and, we hope, inspire new research in automated scientific discovery.
We see conjecture-making—and conjecture-revision in the face of contradictory data (counterexamples)—as a central 

feature of intelligence. We make guesses, based on our previous experience in relevantly similar situations, learn that our 
guesses are wrong, revise them, and test them against our experience.

2. Background & related work

Turing, famously, proposed the idea of designing intelligent machines as an engineering problem, and proposed a test for 
evaluating the success of such machines. In 1948 he suggested designing machines to do mathematical research as a starting 
point: mathematical research certainly requires intelligence and, it would be a good starting point as mathematical research 
would “require little contact with the outside world” [3]. In the 1950s Newell and Simon developed the Logic Theorist 
program that could prove (some) theorems in first-order logic, and went on to predict that a computer would discover and 
prove an important mathematical theorem within another decade [4]. Success did not come quite that quickly—but there 
has been significant progress in many areas of automating mathematical discovery, and there is no theoretical impediment 
to continued improvement. There is every reason to believe that Newell and Simon’s prediction will be achieved—and likely 
sooner rather than later.

The automation of theorem proving is by far the largest and best-developed area of automated mathematical discovery 
research. A highlight in this area was the 1996 computer proof of the Robbins Conjecture [5]. More recently Timothy Gowers, 
a Fields Medalist, and likely the most accomplished mathematician to do research in automated mathematical discovery has, 
together with Mohan Ganesalingam, developed a theorem-proving program.2

Research on automated conjecture-making was initiated by Wang in the late-1950s [6]. His Program II produced thou-
sands of statements in propositional logic that could be considered as conjectures or potential theorems. His program 
included heuristics for deciding which statements to output. Evaluated as a tool for advancing mathematical research, 
Wang’s program was a failure. He wrote:

It was at first thought that these crude principles are sufficient to cut down the number of theorems to a degree that 
only a reasonably small number of theorems remain. It turns out that there are still too many theorems. The number of 
theorems printed out after running the machine for a few hours is so formidable that the writer has not even attempted 
to analyze the mass of data obtained [6].

What Wang really wanted was for his program to produce a limited number of statements of interest to logicians. Wang 
selected a few statements to include in publication—but what was really needed was a way for the program itself to identify 
the interesting, useful or important statements.

The first program to make conjectures leading to published mathematical research was Fajtlowicz’s Graffiti program 
[7–10,1]. An early version of Graffiti was called the “Sorcerer’s Apprentice” [11] because the program, like Wang’s, produced 
a large number of statements. In the Goethe poem (and the Disney Fantasia version with Mickey Mouse) a sorcerer’s 
apprentice intends to use his master’s spells to animate a broom to help him carry a bucket of water but he ends up with 
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